L(s) = 1 | + (−1.39 − 0.238i)2-s + (−0.183 − 0.183i)3-s + (1.88 + 0.666i)4-s + (−0.569 − 2.16i)5-s + (0.212 + 0.300i)6-s + 3.84·7-s + (−2.46 − 1.37i)8-s − 2.93i·9-s + (0.277 + 3.15i)10-s + (1.60 + 1.60i)11-s + (−0.224 − 0.469i)12-s + (−1.80 − 1.80i)13-s + (−5.36 − 0.919i)14-s + (−0.292 + 0.502i)15-s + (3.11 + 2.51i)16-s + 4.93i·17-s + ⋯ |
L(s) = 1 | + (−0.985 − 0.168i)2-s + (−0.106 − 0.106i)3-s + (0.942 + 0.333i)4-s + (−0.254 − 0.966i)5-s + (0.0866 + 0.122i)6-s + 1.45·7-s + (−0.873 − 0.487i)8-s − 0.977i·9-s + (0.0877 + 0.996i)10-s + (0.482 + 0.482i)11-s + (−0.0647 − 0.135i)12-s + (−0.501 − 0.501i)13-s + (−1.43 − 0.245i)14-s + (−0.0755 + 0.129i)15-s + (0.778 + 0.628i)16-s + 1.19i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.686 + 0.727i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.686 + 0.727i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.611376 - 0.263593i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.611376 - 0.263593i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.39 + 0.238i)T \) |
| 5 | \( 1 + (0.569 + 2.16i)T \) |
good | 3 | \( 1 + (0.183 + 0.183i)T + 3iT^{2} \) |
| 7 | \( 1 - 3.84T + 7T^{2} \) |
| 11 | \( 1 + (-1.60 - 1.60i)T + 11iT^{2} \) |
| 13 | \( 1 + (1.80 + 1.80i)T + 13iT^{2} \) |
| 17 | \( 1 - 4.93iT - 17T^{2} \) |
| 19 | \( 1 + (4.77 - 4.77i)T - 19iT^{2} \) |
| 23 | \( 1 - 0.134T + 23T^{2} \) |
| 29 | \( 1 + (-2.17 + 2.17i)T - 29iT^{2} \) |
| 31 | \( 1 - 2.26T + 31T^{2} \) |
| 37 | \( 1 + (-4.35 + 4.35i)T - 37iT^{2} \) |
| 41 | \( 1 - 3.34iT - 41T^{2} \) |
| 43 | \( 1 + (2.70 - 2.70i)T - 43iT^{2} \) |
| 47 | \( 1 - 7.03iT - 47T^{2} \) |
| 53 | \( 1 + (3.40 - 3.40i)T - 53iT^{2} \) |
| 59 | \( 1 + (0.107 + 0.107i)T + 59iT^{2} \) |
| 61 | \( 1 + (3.46 - 3.46i)T - 61iT^{2} \) |
| 67 | \( 1 + (1.91 + 1.91i)T + 67iT^{2} \) |
| 71 | \( 1 + 9.32iT - 71T^{2} \) |
| 73 | \( 1 - 9.82T + 73T^{2} \) |
| 79 | \( 1 + 11.0T + 79T^{2} \) |
| 83 | \( 1 + (-8.80 - 8.80i)T + 83iT^{2} \) |
| 89 | \( 1 - 1.12iT - 89T^{2} \) |
| 97 | \( 1 + 6.10iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.69382155198717277260617986301, −12.60178167392301467873025832574, −12.09586734539249555343720353985, −10.96275283963623095521318148068, −9.675256026200400757376880337179, −8.484601455951471830256080357010, −7.80916025777719112160372191063, −6.10215074392814496239830110346, −4.24506280589737075028477561108, −1.52746321359538754853897119772,
2.34958294078332596318156431949, 4.90935424394407053030088576251, 6.71681848073864374418711334772, 7.71634317272849894907011604440, 8.758610135004346994881694249837, 10.26325593145792112656535739209, 11.23999471266225716394877197490, 11.62936383850112906305409627999, 13.89064567601405946454404916991, 14.66130554050946555364748934375