| L(s) = 1 | + (−1.39 + 0.238i)2-s + (−0.183 + 0.183i)3-s + (1.88 − 0.666i)4-s + (−0.569 + 2.16i)5-s + (0.212 − 0.300i)6-s + 3.84·7-s + (−2.46 + 1.37i)8-s + 2.93i·9-s + (0.277 − 3.15i)10-s + (1.60 − 1.60i)11-s + (−0.224 + 0.469i)12-s + (−1.80 + 1.80i)13-s + (−5.36 + 0.919i)14-s + (−0.292 − 0.502i)15-s + (3.11 − 2.51i)16-s − 4.93i·17-s + ⋯ |
| L(s) = 1 | + (−0.985 + 0.168i)2-s + (−0.106 + 0.106i)3-s + (0.942 − 0.333i)4-s + (−0.254 + 0.966i)5-s + (0.0866 − 0.122i)6-s + 1.45·7-s + (−0.873 + 0.487i)8-s + 0.977i·9-s + (0.0877 − 0.996i)10-s + (0.482 − 0.482i)11-s + (−0.0647 + 0.135i)12-s + (−0.501 + 0.501i)13-s + (−1.43 + 0.245i)14-s + (−0.0755 − 0.129i)15-s + (0.778 − 0.628i)16-s − 1.19i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.686 - 0.727i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.686 - 0.727i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.611376 + 0.263593i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.611376 + 0.263593i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (1.39 - 0.238i)T \) |
| 5 | \( 1 + (0.569 - 2.16i)T \) |
| good | 3 | \( 1 + (0.183 - 0.183i)T - 3iT^{2} \) |
| 7 | \( 1 - 3.84T + 7T^{2} \) |
| 11 | \( 1 + (-1.60 + 1.60i)T - 11iT^{2} \) |
| 13 | \( 1 + (1.80 - 1.80i)T - 13iT^{2} \) |
| 17 | \( 1 + 4.93iT - 17T^{2} \) |
| 19 | \( 1 + (4.77 + 4.77i)T + 19iT^{2} \) |
| 23 | \( 1 - 0.134T + 23T^{2} \) |
| 29 | \( 1 + (-2.17 - 2.17i)T + 29iT^{2} \) |
| 31 | \( 1 - 2.26T + 31T^{2} \) |
| 37 | \( 1 + (-4.35 - 4.35i)T + 37iT^{2} \) |
| 41 | \( 1 + 3.34iT - 41T^{2} \) |
| 43 | \( 1 + (2.70 + 2.70i)T + 43iT^{2} \) |
| 47 | \( 1 + 7.03iT - 47T^{2} \) |
| 53 | \( 1 + (3.40 + 3.40i)T + 53iT^{2} \) |
| 59 | \( 1 + (0.107 - 0.107i)T - 59iT^{2} \) |
| 61 | \( 1 + (3.46 + 3.46i)T + 61iT^{2} \) |
| 67 | \( 1 + (1.91 - 1.91i)T - 67iT^{2} \) |
| 71 | \( 1 - 9.32iT - 71T^{2} \) |
| 73 | \( 1 - 9.82T + 73T^{2} \) |
| 79 | \( 1 + 11.0T + 79T^{2} \) |
| 83 | \( 1 + (-8.80 + 8.80i)T - 83iT^{2} \) |
| 89 | \( 1 + 1.12iT - 89T^{2} \) |
| 97 | \( 1 - 6.10iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.66130554050946555364748934375, −13.89064567601405946454404916991, −11.62936383850112906305409627999, −11.23999471266225716394877197490, −10.26325593145792112656535739209, −8.758610135004346994881694249837, −7.71634317272849894907011604440, −6.71681848073864374418711334772, −4.90935424394407053030088576251, −2.34958294078332596318156431949,
1.52746321359538754853897119772, 4.24506280589737075028477561108, 6.10215074392814496239830110346, 7.80916025777719112160372191063, 8.484601455951471830256080357010, 9.675256026200400757376880337179, 10.96275283963623095521318148068, 12.09586734539249555343720353985, 12.60178167392301467873025832574, 14.69382155198717277260617986301