Properties

Label 4-80e2-1.1-c9e2-0-4
Degree $4$
Conductor $6400$
Sign $1$
Analytic cond. $1697.67$
Root an. cond. $6.41894$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 260·3-s + 1.25e3·5-s − 1.70e3·7-s + 1.53e4·9-s − 2.39e4·11-s + 1.15e5·13-s − 3.25e5·15-s + 4.12e5·17-s + 2.96e5·19-s + 4.42e5·21-s + 1.04e6·23-s + 1.17e6·25-s + 4.46e6·27-s − 3.66e6·29-s − 1.61e6·31-s + 6.23e6·33-s − 2.12e6·35-s − 2.11e7·37-s − 2.99e7·39-s − 2.69e7·41-s − 5.28e7·43-s + 1.92e7·45-s − 5.84e7·47-s − 3.23e7·49-s − 1.07e8·51-s − 3.90e7·53-s − 2.99e7·55-s + ⋯
L(s)  = 1  − 1.85·3-s + 0.894·5-s − 0.267·7-s + 0.780·9-s − 0.493·11-s + 1.11·13-s − 1.65·15-s + 1.19·17-s + 0.521·19-s + 0.495·21-s + 0.781·23-s + 3/5·25-s + 1.61·27-s − 0.962·29-s − 0.313·31-s + 0.915·33-s − 0.239·35-s − 1.85·37-s − 2.06·39-s − 1.48·41-s − 2.35·43-s + 0.698·45-s − 1.74·47-s − 0.801·49-s − 2.22·51-s − 0.679·53-s − 0.441·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6400 ^{s/2} \, \Gamma_{\C}(s+9/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(6400\)    =    \(2^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(1697.67\)
Root analytic conductor: \(6.41894\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 6400,\ (\ :9/2, 9/2),\ 1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 - p^{4} T )^{2} \)
good3$D_{4}$ \( 1 + 260 T + 17410 p T^{2} + 260 p^{9} T^{3} + p^{18} T^{4} \)
7$D_{4}$ \( 1 + 1700 T + 5031650 p T^{2} + 1700 p^{9} T^{3} + p^{18} T^{4} \)
11$D_{4}$ \( 1 + 23984 T + 1217213446 T^{2} + 23984 p^{9} T^{3} + p^{18} T^{4} \)
13$D_{4}$ \( 1 - 115020 T + 22672043710 T^{2} - 115020 p^{9} T^{3} + p^{18} T^{4} \)
17$D_{4}$ \( 1 - 412820 T + 113016614470 T^{2} - 412820 p^{9} T^{3} + p^{18} T^{4} \)
19$D_{4}$ \( 1 - 296520 T + 659218232758 T^{2} - 296520 p^{9} T^{3} + p^{18} T^{4} \)
23$D_{4}$ \( 1 - 1049220 T + 3497852029390 T^{2} - 1049220 p^{9} T^{3} + p^{18} T^{4} \)
29$D_{4}$ \( 1 + 3666980 T + 20832571957438 T^{2} + 3666980 p^{9} T^{3} + p^{18} T^{4} \)
31$D_{4}$ \( 1 + 1613144 T + 29382323902526 T^{2} + 1613144 p^{9} T^{3} + p^{18} T^{4} \)
37$D_{4}$ \( 1 + 21121940 T + 328931801286510 T^{2} + 21121940 p^{9} T^{3} + p^{18} T^{4} \)
41$D_{4}$ \( 1 + 26957276 T + 811945448362966 T^{2} + 26957276 p^{9} T^{3} + p^{18} T^{4} \)
43$D_{4}$ \( 1 + 52889700 T + 1703843788760950 T^{2} + 52889700 p^{9} T^{3} + p^{18} T^{4} \)
47$D_{4}$ \( 1 + 58412180 T + 2814913257457630 T^{2} + 58412180 p^{9} T^{3} + p^{18} T^{4} \)
53$D_{4}$ \( 1 + 39035140 T + 5675030678030830 T^{2} + 39035140 p^{9} T^{3} + p^{18} T^{4} \)
59$D_{4}$ \( 1 - 54995560 T + 15674484224932678 T^{2} - 54995560 p^{9} T^{3} + p^{18} T^{4} \)
61$D_{4}$ \( 1 + 274579716 T + 41753623519328446 T^{2} + 274579716 p^{9} T^{3} + p^{18} T^{4} \)
67$D_{4}$ \( 1 - 318580 T + 48520062064444070 T^{2} - 318580 p^{9} T^{3} + p^{18} T^{4} \)
71$D_{4}$ \( 1 - 7130936 T + 51935375688707086 T^{2} - 7130936 p^{9} T^{3} + p^{18} T^{4} \)
73$D_{4}$ \( 1 - 120858180 T + 42707263689423190 T^{2} - 120858180 p^{9} T^{3} + p^{18} T^{4} \)
79$D_{4}$ \( 1 + 6877520 T - 115982362290712162 T^{2} + 6877520 p^{9} T^{3} + p^{18} T^{4} \)
83$D_{4}$ \( 1 + 1402348740 T + 857904310704391270 T^{2} + 1402348740 p^{9} T^{3} + p^{18} T^{4} \)
89$D_{4}$ \( 1 - 830088660 T + 692293619421117718 T^{2} - 830088660 p^{9} T^{3} + p^{18} T^{4} \)
97$D_{4}$ \( 1 - 638394580 T + 1615411126351062630 T^{2} - 638394580 p^{9} T^{3} + p^{18} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.91633346612184907332023860043, −11.85317479276560552781097868852, −10.96395379460724678797794341208, −10.92536582444603334814427027711, −9.953519134626297116565887974812, −9.933214454921918246245303151545, −8.811155577028848079224379236827, −8.430755846353980198699704466515, −7.47995273412471680657756101568, −6.59874503056738560587136966161, −6.36211497029717350067649745801, −5.64354649690455642131761236638, −5.18501360442173661154752827800, −4.96377256152341887831621215713, −3.37542349387348686684900784821, −3.14381093470579667682176944859, −1.61692099329015682280055185277, −1.29622056076625173988817307107, 0, 0, 1.29622056076625173988817307107, 1.61692099329015682280055185277, 3.14381093470579667682176944859, 3.37542349387348686684900784821, 4.96377256152341887831621215713, 5.18501360442173661154752827800, 5.64354649690455642131761236638, 6.36211497029717350067649745801, 6.59874503056738560587136966161, 7.47995273412471680657756101568, 8.430755846353980198699704466515, 8.811155577028848079224379236827, 9.933214454921918246245303151545, 9.953519134626297116565887974812, 10.92536582444603334814427027711, 10.96395379460724678797794341208, 11.85317479276560552781097868852, 11.91633346612184907332023860043

Graph of the $Z$-function along the critical line