Properties

Label 2-798-19.6-c1-0-12
Degree $2$
Conductor $798$
Sign $0.159 + 0.987i$
Analytic cond. $6.37206$
Root an. cond. $2.52429$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.766 + 0.642i)2-s + (−0.939 − 0.342i)3-s + (0.173 − 0.984i)4-s + (−0.445 − 2.52i)5-s + (0.939 − 0.342i)6-s + (0.5 − 0.866i)7-s + (0.500 + 0.866i)8-s + (0.766 + 0.642i)9-s + (1.96 + 1.64i)10-s + (1.61 + 2.80i)11-s + (−0.499 + 0.866i)12-s + (0.978 − 0.356i)13-s + (0.173 + 0.984i)14-s + (−0.445 + 2.52i)15-s + (−0.939 − 0.342i)16-s + (2.18 − 1.83i)17-s + ⋯
L(s)  = 1  + (−0.541 + 0.454i)2-s + (−0.542 − 0.197i)3-s + (0.0868 − 0.492i)4-s + (−0.199 − 1.12i)5-s + (0.383 − 0.139i)6-s + (0.188 − 0.327i)7-s + (0.176 + 0.306i)8-s + (0.255 + 0.214i)9-s + (0.620 + 0.520i)10-s + (0.488 + 0.845i)11-s + (−0.144 + 0.250i)12-s + (0.271 − 0.0988i)13-s + (0.0464 + 0.263i)14-s + (−0.114 + 0.651i)15-s + (−0.234 − 0.0855i)16-s + (0.529 − 0.444i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.159 + 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 798 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.159 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(798\)    =    \(2 \cdot 3 \cdot 7 \cdot 19\)
Sign: $0.159 + 0.987i$
Analytic conductor: \(6.37206\)
Root analytic conductor: \(2.52429\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{798} (253, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 798,\ (\ :1/2),\ 0.159 + 0.987i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.658153 - 0.560331i\)
\(L(\frac12)\) \(\approx\) \(0.658153 - 0.560331i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.766 - 0.642i)T \)
3 \( 1 + (0.939 + 0.342i)T \)
7 \( 1 + (-0.5 + 0.866i)T \)
19 \( 1 + (-3.33 + 2.80i)T \)
good5 \( 1 + (0.445 + 2.52i)T + (-4.69 + 1.71i)T^{2} \)
11 \( 1 + (-1.61 - 2.80i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (-0.978 + 0.356i)T + (9.95 - 8.35i)T^{2} \)
17 \( 1 + (-2.18 + 1.83i)T + (2.95 - 16.7i)T^{2} \)
23 \( 1 + (0.790 - 4.48i)T + (-21.6 - 7.86i)T^{2} \)
29 \( 1 + (5.24 + 4.40i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (-3.84 + 6.65i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + 4.63T + 37T^{2} \)
41 \( 1 + (11.4 + 4.15i)T + (31.4 + 26.3i)T^{2} \)
43 \( 1 + (1.84 + 10.4i)T + (-40.4 + 14.7i)T^{2} \)
47 \( 1 + (-3.25 - 2.72i)T + (8.16 + 46.2i)T^{2} \)
53 \( 1 + (-0.0500 + 0.284i)T + (-49.8 - 18.1i)T^{2} \)
59 \( 1 + (-0.251 + 0.211i)T + (10.2 - 58.1i)T^{2} \)
61 \( 1 + (-0.222 + 1.26i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (-0.0419 - 0.0351i)T + (11.6 + 65.9i)T^{2} \)
71 \( 1 + (2.56 + 14.5i)T + (-66.7 + 24.2i)T^{2} \)
73 \( 1 + (-13.8 - 5.03i)T + (55.9 + 46.9i)T^{2} \)
79 \( 1 + (-9.01 - 3.27i)T + (60.5 + 50.7i)T^{2} \)
83 \( 1 + (4.21 - 7.30i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + (-7.75 + 2.82i)T + (68.1 - 57.2i)T^{2} \)
97 \( 1 + (0.638 - 0.536i)T + (16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.796777896550005759503722785605, −9.321563848717670560588983593124, −8.287740417635780098277927079371, −7.50849934352828184913636036222, −6.79428190534287262395713727159, −5.55008277480938617668004462932, −4.96410773938263970948731281090, −3.87286459449514577184764379524, −1.78531770863073467352179111412, −0.61742609076097742054919070479, 1.41246467825636539070736245336, 3.04347152659115455500294168701, 3.69798783289729307515324990704, 5.17053780253637787998016493749, 6.27673256932103607835954128141, 6.92588794935554150511557205294, 8.042443729365188001224218644621, 8.787259533943771765090733265898, 9.874112570738342173911794524427, 10.54794432896355812200333698842

Graph of the $Z$-function along the critical line