Properties

Label 2-7935-1.1-c1-0-188
Degree $2$
Conductor $7935$
Sign $1$
Analytic cond. $63.3612$
Root an. cond. $7.95998$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.635·2-s + 3-s − 1.59·4-s + 5-s + 0.635·6-s + 4.78·7-s − 2.28·8-s + 9-s + 0.635·10-s + 0.276·11-s − 1.59·12-s + 4.93·13-s + 3.04·14-s + 15-s + 1.73·16-s + 2.88·17-s + 0.635·18-s − 4.56·19-s − 1.59·20-s + 4.78·21-s + 0.175·22-s − 2.28·24-s + 25-s + 3.13·26-s + 27-s − 7.63·28-s + 3.42·29-s + ⋯
L(s)  = 1  + 0.449·2-s + 0.577·3-s − 0.797·4-s + 0.447·5-s + 0.259·6-s + 1.80·7-s − 0.808·8-s + 0.333·9-s + 0.201·10-s + 0.0832·11-s − 0.460·12-s + 1.36·13-s + 0.812·14-s + 0.258·15-s + 0.434·16-s + 0.700·17-s + 0.149·18-s − 1.04·19-s − 0.356·20-s + 1.04·21-s + 0.0374·22-s − 0.466·24-s + 0.200·25-s + 0.615·26-s + 0.192·27-s − 1.44·28-s + 0.635·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7935 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7935\)    =    \(3 \cdot 5 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(63.3612\)
Root analytic conductor: \(7.95998\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7935,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.123457880\)
\(L(\frac12)\) \(\approx\) \(4.123457880\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
5 \( 1 - T \)
23 \( 1 \)
good2 \( 1 - 0.635T + 2T^{2} \)
7 \( 1 - 4.78T + 7T^{2} \)
11 \( 1 - 0.276T + 11T^{2} \)
13 \( 1 - 4.93T + 13T^{2} \)
17 \( 1 - 2.88T + 17T^{2} \)
19 \( 1 + 4.56T + 19T^{2} \)
29 \( 1 - 3.42T + 29T^{2} \)
31 \( 1 - 3.30T + 31T^{2} \)
37 \( 1 - 4.64T + 37T^{2} \)
41 \( 1 - 1.66T + 41T^{2} \)
43 \( 1 + 0.886T + 43T^{2} \)
47 \( 1 + 13.5T + 47T^{2} \)
53 \( 1 - 10.8T + 53T^{2} \)
59 \( 1 - 6.78T + 59T^{2} \)
61 \( 1 + 11.7T + 61T^{2} \)
67 \( 1 - 3.25T + 67T^{2} \)
71 \( 1 + 10.0T + 71T^{2} \)
73 \( 1 + 6.87T + 73T^{2} \)
79 \( 1 + 13.4T + 79T^{2} \)
83 \( 1 + 13.0T + 83T^{2} \)
89 \( 1 - 9.69T + 89T^{2} \)
97 \( 1 + 0.0430T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.122480840633753674480763513233, −7.28831232146518078680231714478, −6.17839798111434072021740542985, −5.73881725331082220751490965794, −4.78479291927298249539885215285, −4.43903848241567478896347422735, −3.66458672888546799527490579479, −2.76061798206151410091180656775, −1.71202644302847303231104054620, −1.02774611201056359424203408121, 1.02774611201056359424203408121, 1.71202644302847303231104054620, 2.76061798206151410091180656775, 3.66458672888546799527490579479, 4.43903848241567478896347422735, 4.78479291927298249539885215285, 5.73881725331082220751490965794, 6.17839798111434072021740542985, 7.28831232146518078680231714478, 8.122480840633753674480763513233

Graph of the $Z$-function along the critical line