Properties

Label 7935.2.a.bi.1.5
Level $7935$
Weight $2$
Character 7935.1
Self dual yes
Analytic conductor $63.361$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7935,2,Mod(1,7935)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7935, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7935.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7935 = 3 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7935.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,8,8,8,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3612940039\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 12x^{6} - 2x^{5} + 44x^{4} + 12x^{3} - 50x^{2} - 8x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.635899\) of defining polynomial
Character \(\chi\) \(=\) 7935.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.635899 q^{2} +1.00000 q^{3} -1.59563 q^{4} +1.00000 q^{5} +0.635899 q^{6} +4.78252 q^{7} -2.28646 q^{8} +1.00000 q^{9} +0.635899 q^{10} +0.276255 q^{11} -1.59563 q^{12} +4.93303 q^{13} +3.04120 q^{14} +1.00000 q^{15} +1.73731 q^{16} +2.88784 q^{17} +0.635899 q^{18} -4.56893 q^{19} -1.59563 q^{20} +4.78252 q^{21} +0.175670 q^{22} -2.28646 q^{24} +1.00000 q^{25} +3.13691 q^{26} +1.00000 q^{27} -7.63115 q^{28} +3.42186 q^{29} +0.635899 q^{30} +3.30888 q^{31} +5.67767 q^{32} +0.276255 q^{33} +1.83637 q^{34} +4.78252 q^{35} -1.59563 q^{36} +4.64027 q^{37} -2.90538 q^{38} +4.93303 q^{39} -2.28646 q^{40} +1.66260 q^{41} +3.04120 q^{42} -0.886572 q^{43} -0.440801 q^{44} +1.00000 q^{45} -13.5078 q^{47} +1.73731 q^{48} +15.8725 q^{49} +0.635899 q^{50} +2.88784 q^{51} -7.87130 q^{52} +10.8054 q^{53} +0.635899 q^{54} +0.276255 q^{55} -10.9350 q^{56} -4.56893 q^{57} +2.17596 q^{58} +6.78102 q^{59} -1.59563 q^{60} -11.7346 q^{61} +2.10411 q^{62} +4.78252 q^{63} +0.135808 q^{64} +4.93303 q^{65} +0.175670 q^{66} +3.25200 q^{67} -4.60793 q^{68} +3.04120 q^{70} -10.0627 q^{71} -2.28646 q^{72} -6.87641 q^{73} +2.95075 q^{74} +1.00000 q^{75} +7.29033 q^{76} +1.32119 q^{77} +3.13691 q^{78} -13.4336 q^{79} +1.73731 q^{80} +1.00000 q^{81} +1.05725 q^{82} -13.0860 q^{83} -7.63115 q^{84} +2.88784 q^{85} -0.563770 q^{86} +3.42186 q^{87} -0.631645 q^{88} +9.69588 q^{89} +0.635899 q^{90} +23.5923 q^{91} +3.30888 q^{93} -8.58958 q^{94} -4.56893 q^{95} +5.67767 q^{96} -0.0430940 q^{97} +10.0933 q^{98} +0.276255 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} + 8 q^{4} + 8 q^{5} + 6 q^{7} + 6 q^{8} + 8 q^{9} + 12 q^{11} + 8 q^{12} + 4 q^{13} + 8 q^{15} + 20 q^{17} + 4 q^{19} + 8 q^{20} + 6 q^{21} + 14 q^{22} + 6 q^{24} + 8 q^{25} - 22 q^{26} + 8 q^{27}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.635899 0.449648 0.224824 0.974399i \(-0.427819\pi\)
0.224824 + 0.974399i \(0.427819\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.59563 −0.797816
\(5\) 1.00000 0.447214
\(6\) 0.635899 0.259605
\(7\) 4.78252 1.80762 0.903812 0.427931i \(-0.140757\pi\)
0.903812 + 0.427931i \(0.140757\pi\)
\(8\) −2.28646 −0.808385
\(9\) 1.00000 0.333333
\(10\) 0.635899 0.201089
\(11\) 0.276255 0.0832939 0.0416469 0.999132i \(-0.486740\pi\)
0.0416469 + 0.999132i \(0.486740\pi\)
\(12\) −1.59563 −0.460619
\(13\) 4.93303 1.36818 0.684088 0.729399i \(-0.260200\pi\)
0.684088 + 0.729399i \(0.260200\pi\)
\(14\) 3.04120 0.812795
\(15\) 1.00000 0.258199
\(16\) 1.73731 0.434327
\(17\) 2.88784 0.700404 0.350202 0.936674i \(-0.386113\pi\)
0.350202 + 0.936674i \(0.386113\pi\)
\(18\) 0.635899 0.149883
\(19\) −4.56893 −1.04818 −0.524092 0.851662i \(-0.675595\pi\)
−0.524092 + 0.851662i \(0.675595\pi\)
\(20\) −1.59563 −0.356794
\(21\) 4.78252 1.04363
\(22\) 0.175670 0.0374530
\(23\) 0 0
\(24\) −2.28646 −0.466721
\(25\) 1.00000 0.200000
\(26\) 3.13691 0.615198
\(27\) 1.00000 0.192450
\(28\) −7.63115 −1.44215
\(29\) 3.42186 0.635424 0.317712 0.948187i \(-0.397085\pi\)
0.317712 + 0.948187i \(0.397085\pi\)
\(30\) 0.635899 0.116099
\(31\) 3.30888 0.594292 0.297146 0.954832i \(-0.403965\pi\)
0.297146 + 0.954832i \(0.403965\pi\)
\(32\) 5.67767 1.00368
\(33\) 0.276255 0.0480897
\(34\) 1.83637 0.314936
\(35\) 4.78252 0.808394
\(36\) −1.59563 −0.265939
\(37\) 4.64027 0.762857 0.381428 0.924398i \(-0.375432\pi\)
0.381428 + 0.924398i \(0.375432\pi\)
\(38\) −2.90538 −0.471314
\(39\) 4.93303 0.789917
\(40\) −2.28646 −0.361521
\(41\) 1.66260 0.259655 0.129827 0.991537i \(-0.458558\pi\)
0.129827 + 0.991537i \(0.458558\pi\)
\(42\) 3.04120 0.469267
\(43\) −0.886572 −0.135201 −0.0676005 0.997712i \(-0.521534\pi\)
−0.0676005 + 0.997712i \(0.521534\pi\)
\(44\) −0.440801 −0.0664532
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) −13.5078 −1.97031 −0.985155 0.171665i \(-0.945085\pi\)
−0.985155 + 0.171665i \(0.945085\pi\)
\(48\) 1.73731 0.250759
\(49\) 15.8725 2.26750
\(50\) 0.635899 0.0899297
\(51\) 2.88784 0.404379
\(52\) −7.87130 −1.09155
\(53\) 10.8054 1.48424 0.742121 0.670266i \(-0.233820\pi\)
0.742121 + 0.670266i \(0.233820\pi\)
\(54\) 0.635899 0.0865349
\(55\) 0.276255 0.0372502
\(56\) −10.9350 −1.46126
\(57\) −4.56893 −0.605169
\(58\) 2.17596 0.285717
\(59\) 6.78102 0.882813 0.441407 0.897307i \(-0.354480\pi\)
0.441407 + 0.897307i \(0.354480\pi\)
\(60\) −1.59563 −0.205995
\(61\) −11.7346 −1.50246 −0.751232 0.660039i \(-0.770540\pi\)
−0.751232 + 0.660039i \(0.770540\pi\)
\(62\) 2.10411 0.267223
\(63\) 4.78252 0.602541
\(64\) 0.135808 0.0169760
\(65\) 4.93303 0.611867
\(66\) 0.175670 0.0216235
\(67\) 3.25200 0.397295 0.198647 0.980071i \(-0.436345\pi\)
0.198647 + 0.980071i \(0.436345\pi\)
\(68\) −4.60793 −0.558794
\(69\) 0 0
\(70\) 3.04120 0.363493
\(71\) −10.0627 −1.19423 −0.597114 0.802157i \(-0.703686\pi\)
−0.597114 + 0.802157i \(0.703686\pi\)
\(72\) −2.28646 −0.269462
\(73\) −6.87641 −0.804822 −0.402411 0.915459i \(-0.631828\pi\)
−0.402411 + 0.915459i \(0.631828\pi\)
\(74\) 2.95075 0.343017
\(75\) 1.00000 0.115470
\(76\) 7.29033 0.836258
\(77\) 1.32119 0.150564
\(78\) 3.13691 0.355185
\(79\) −13.4336 −1.51140 −0.755701 0.654917i \(-0.772704\pi\)
−0.755701 + 0.654917i \(0.772704\pi\)
\(80\) 1.73731 0.194237
\(81\) 1.00000 0.111111
\(82\) 1.05725 0.116753
\(83\) −13.0860 −1.43637 −0.718186 0.695851i \(-0.755028\pi\)
−0.718186 + 0.695851i \(0.755028\pi\)
\(84\) −7.63115 −0.832626
\(85\) 2.88784 0.313230
\(86\) −0.563770 −0.0607929
\(87\) 3.42186 0.366862
\(88\) −0.631645 −0.0673336
\(89\) 9.69588 1.02776 0.513881 0.857862i \(-0.328207\pi\)
0.513881 + 0.857862i \(0.328207\pi\)
\(90\) 0.635899 0.0670296
\(91\) 23.5923 2.47315
\(92\) 0 0
\(93\) 3.30888 0.343115
\(94\) −8.58958 −0.885947
\(95\) −4.56893 −0.468762
\(96\) 5.67767 0.579475
\(97\) −0.0430940 −0.00437553 −0.00218777 0.999998i \(-0.500696\pi\)
−0.00218777 + 0.999998i \(0.500696\pi\)
\(98\) 10.0933 1.01958
\(99\) 0.276255 0.0277646
\(100\) −1.59563 −0.159563
\(101\) 8.98133 0.893676 0.446838 0.894615i \(-0.352550\pi\)
0.446838 + 0.894615i \(0.352550\pi\)
\(102\) 1.83637 0.181828
\(103\) −9.20908 −0.907398 −0.453699 0.891155i \(-0.649896\pi\)
−0.453699 + 0.891155i \(0.649896\pi\)
\(104\) −11.2792 −1.10601
\(105\) 4.78252 0.466726
\(106\) 6.87117 0.667387
\(107\) 13.5129 1.30634 0.653169 0.757212i \(-0.273439\pi\)
0.653169 + 0.757212i \(0.273439\pi\)
\(108\) −1.59563 −0.153540
\(109\) −0.408532 −0.0391303 −0.0195651 0.999809i \(-0.506228\pi\)
−0.0195651 + 0.999809i \(0.506228\pi\)
\(110\) 0.175670 0.0167495
\(111\) 4.64027 0.440435
\(112\) 8.30871 0.785100
\(113\) 16.3292 1.53612 0.768060 0.640378i \(-0.221222\pi\)
0.768060 + 0.640378i \(0.221222\pi\)
\(114\) −2.90538 −0.272113
\(115\) 0 0
\(116\) −5.46004 −0.506952
\(117\) 4.93303 0.456059
\(118\) 4.31204 0.396956
\(119\) 13.8112 1.26607
\(120\) −2.28646 −0.208724
\(121\) −10.9237 −0.993062
\(122\) −7.46203 −0.675580
\(123\) 1.66260 0.149912
\(124\) −5.27975 −0.474136
\(125\) 1.00000 0.0894427
\(126\) 3.04120 0.270932
\(127\) 20.5073 1.81973 0.909866 0.414902i \(-0.136184\pi\)
0.909866 + 0.414902i \(0.136184\pi\)
\(128\) −11.2690 −0.996047
\(129\) −0.886572 −0.0780583
\(130\) 3.13691 0.275125
\(131\) 3.68291 0.321777 0.160889 0.986973i \(-0.448564\pi\)
0.160889 + 0.986973i \(0.448564\pi\)
\(132\) −0.440801 −0.0383668
\(133\) −21.8510 −1.89472
\(134\) 2.06794 0.178643
\(135\) 1.00000 0.0860663
\(136\) −6.60293 −0.566196
\(137\) 15.6536 1.33738 0.668690 0.743541i \(-0.266855\pi\)
0.668690 + 0.743541i \(0.266855\pi\)
\(138\) 0 0
\(139\) 3.88597 0.329604 0.164802 0.986327i \(-0.447302\pi\)
0.164802 + 0.986327i \(0.447302\pi\)
\(140\) −7.63115 −0.644950
\(141\) −13.5078 −1.13756
\(142\) −6.39889 −0.536983
\(143\) 1.36277 0.113961
\(144\) 1.73731 0.144776
\(145\) 3.42186 0.284170
\(146\) −4.37270 −0.361887
\(147\) 15.8725 1.30914
\(148\) −7.40417 −0.608619
\(149\) −2.36121 −0.193438 −0.0967190 0.995312i \(-0.530835\pi\)
−0.0967190 + 0.995312i \(0.530835\pi\)
\(150\) 0.635899 0.0519209
\(151\) −23.8788 −1.94323 −0.971615 0.236567i \(-0.923978\pi\)
−0.971615 + 0.236567i \(0.923978\pi\)
\(152\) 10.4467 0.847337
\(153\) 2.88784 0.233468
\(154\) 0.840146 0.0677009
\(155\) 3.30888 0.265776
\(156\) −7.87130 −0.630209
\(157\) 10.0588 0.802776 0.401388 0.915908i \(-0.368528\pi\)
0.401388 + 0.915908i \(0.368528\pi\)
\(158\) −8.54243 −0.679600
\(159\) 10.8054 0.856928
\(160\) 5.67767 0.448859
\(161\) 0 0
\(162\) 0.635899 0.0499609
\(163\) −12.2640 −0.960592 −0.480296 0.877107i \(-0.659471\pi\)
−0.480296 + 0.877107i \(0.659471\pi\)
\(164\) −2.65290 −0.207157
\(165\) 0.276255 0.0215064
\(166\) −8.32136 −0.645863
\(167\) −19.3110 −1.49433 −0.747164 0.664640i \(-0.768585\pi\)
−0.747164 + 0.664640i \(0.768585\pi\)
\(168\) −10.9350 −0.843657
\(169\) 11.3348 0.871907
\(170\) 1.83637 0.140844
\(171\) −4.56893 −0.349395
\(172\) 1.41464 0.107866
\(173\) 4.41269 0.335491 0.167745 0.985830i \(-0.446351\pi\)
0.167745 + 0.985830i \(0.446351\pi\)
\(174\) 2.17596 0.164959
\(175\) 4.78252 0.361525
\(176\) 0.479939 0.0361768
\(177\) 6.78102 0.509693
\(178\) 6.16560 0.462131
\(179\) −23.0942 −1.72614 −0.863069 0.505086i \(-0.831461\pi\)
−0.863069 + 0.505086i \(0.831461\pi\)
\(180\) −1.59563 −0.118931
\(181\) −0.243579 −0.0181051 −0.00905254 0.999959i \(-0.502882\pi\)
−0.00905254 + 0.999959i \(0.502882\pi\)
\(182\) 15.0023 1.11205
\(183\) −11.7346 −0.867448
\(184\) 0 0
\(185\) 4.64027 0.341160
\(186\) 2.10411 0.154281
\(187\) 0.797779 0.0583394
\(188\) 21.5534 1.57195
\(189\) 4.78252 0.347877
\(190\) −2.90538 −0.210778
\(191\) −6.05875 −0.438396 −0.219198 0.975680i \(-0.570344\pi\)
−0.219198 + 0.975680i \(0.570344\pi\)
\(192\) 0.135808 0.00980111
\(193\) −22.7498 −1.63757 −0.818785 0.574101i \(-0.805352\pi\)
−0.818785 + 0.574101i \(0.805352\pi\)
\(194\) −0.0274034 −0.00196745
\(195\) 4.93303 0.353262
\(196\) −25.3267 −1.80905
\(197\) 18.4262 1.31281 0.656405 0.754409i \(-0.272076\pi\)
0.656405 + 0.754409i \(0.272076\pi\)
\(198\) 0.175670 0.0124843
\(199\) −2.95464 −0.209449 −0.104724 0.994501i \(-0.533396\pi\)
−0.104724 + 0.994501i \(0.533396\pi\)
\(200\) −2.28646 −0.161677
\(201\) 3.25200 0.229378
\(202\) 5.71122 0.401840
\(203\) 16.3651 1.14861
\(204\) −4.60793 −0.322620
\(205\) 1.66260 0.116121
\(206\) −5.85604 −0.408010
\(207\) 0 0
\(208\) 8.57019 0.594236
\(209\) −1.26219 −0.0873073
\(210\) 3.04120 0.209863
\(211\) 0.206723 0.0142314 0.00711568 0.999975i \(-0.497735\pi\)
0.00711568 + 0.999975i \(0.497735\pi\)
\(212\) −17.2415 −1.18415
\(213\) −10.0627 −0.689488
\(214\) 8.59282 0.587393
\(215\) −0.886572 −0.0604637
\(216\) −2.28646 −0.155574
\(217\) 15.8248 1.07426
\(218\) −0.259785 −0.0175949
\(219\) −6.87641 −0.464664
\(220\) −0.440801 −0.0297188
\(221\) 14.2458 0.958276
\(222\) 2.95075 0.198041
\(223\) −10.4059 −0.696830 −0.348415 0.937340i \(-0.613280\pi\)
−0.348415 + 0.937340i \(0.613280\pi\)
\(224\) 27.1536 1.81427
\(225\) 1.00000 0.0666667
\(226\) 10.3837 0.690714
\(227\) 27.3102 1.81264 0.906321 0.422589i \(-0.138879\pi\)
0.906321 + 0.422589i \(0.138879\pi\)
\(228\) 7.29033 0.482814
\(229\) −5.12017 −0.338350 −0.169175 0.985586i \(-0.554110\pi\)
−0.169175 + 0.985586i \(0.554110\pi\)
\(230\) 0 0
\(231\) 1.32119 0.0869281
\(232\) −7.82395 −0.513667
\(233\) 14.8351 0.971879 0.485939 0.873993i \(-0.338478\pi\)
0.485939 + 0.873993i \(0.338478\pi\)
\(234\) 3.13691 0.205066
\(235\) −13.5078 −0.881150
\(236\) −10.8200 −0.704323
\(237\) −13.4336 −0.872608
\(238\) 8.78250 0.569285
\(239\) −3.28108 −0.212236 −0.106118 0.994354i \(-0.533842\pi\)
−0.106118 + 0.994354i \(0.533842\pi\)
\(240\) 1.73731 0.112143
\(241\) 6.29954 0.405789 0.202895 0.979201i \(-0.434965\pi\)
0.202895 + 0.979201i \(0.434965\pi\)
\(242\) −6.94636 −0.446529
\(243\) 1.00000 0.0641500
\(244\) 18.7241 1.19869
\(245\) 15.8725 1.01406
\(246\) 1.05725 0.0674076
\(247\) −22.5387 −1.43410
\(248\) −7.56561 −0.480417
\(249\) −13.0860 −0.829290
\(250\) 0.635899 0.0402178
\(251\) −16.3129 −1.02966 −0.514830 0.857292i \(-0.672145\pi\)
−0.514830 + 0.857292i \(0.672145\pi\)
\(252\) −7.63115 −0.480717
\(253\) 0 0
\(254\) 13.0406 0.818240
\(255\) 2.88784 0.180844
\(256\) −7.43755 −0.464847
\(257\) 15.0080 0.936173 0.468087 0.883683i \(-0.344944\pi\)
0.468087 + 0.883683i \(0.344944\pi\)
\(258\) −0.563770 −0.0350988
\(259\) 22.1922 1.37896
\(260\) −7.87130 −0.488157
\(261\) 3.42186 0.211808
\(262\) 2.34196 0.144687
\(263\) −23.6251 −1.45679 −0.728394 0.685158i \(-0.759733\pi\)
−0.728394 + 0.685158i \(0.759733\pi\)
\(264\) −0.631645 −0.0388750
\(265\) 10.8054 0.663773
\(266\) −13.8950 −0.851959
\(267\) 9.69588 0.593378
\(268\) −5.18899 −0.316968
\(269\) 0.484312 0.0295290 0.0147645 0.999891i \(-0.495300\pi\)
0.0147645 + 0.999891i \(0.495300\pi\)
\(270\) 0.635899 0.0386996
\(271\) 0.957311 0.0581525 0.0290762 0.999577i \(-0.490743\pi\)
0.0290762 + 0.999577i \(0.490743\pi\)
\(272\) 5.01707 0.304205
\(273\) 23.5923 1.42787
\(274\) 9.95413 0.601351
\(275\) 0.276255 0.0166588
\(276\) 0 0
\(277\) −20.1251 −1.20920 −0.604601 0.796529i \(-0.706667\pi\)
−0.604601 + 0.796529i \(0.706667\pi\)
\(278\) 2.47108 0.148206
\(279\) 3.30888 0.198097
\(280\) −10.9350 −0.653494
\(281\) 16.5116 0.985002 0.492501 0.870312i \(-0.336083\pi\)
0.492501 + 0.870312i \(0.336083\pi\)
\(282\) −8.58958 −0.511502
\(283\) 4.25932 0.253191 0.126595 0.991954i \(-0.459595\pi\)
0.126595 + 0.991954i \(0.459595\pi\)
\(284\) 16.0564 0.952774
\(285\) −4.56893 −0.270640
\(286\) 0.866585 0.0512423
\(287\) 7.95143 0.469358
\(288\) 5.67767 0.334560
\(289\) −8.66038 −0.509434
\(290\) 2.17596 0.127777
\(291\) −0.0430940 −0.00252621
\(292\) 10.9722 0.642100
\(293\) 23.7671 1.38849 0.694243 0.719741i \(-0.255739\pi\)
0.694243 + 0.719741i \(0.255739\pi\)
\(294\) 10.0933 0.588654
\(295\) 6.78102 0.394806
\(296\) −10.6098 −0.616682
\(297\) 0.276255 0.0160299
\(298\) −1.50149 −0.0869791
\(299\) 0 0
\(300\) −1.59563 −0.0921239
\(301\) −4.24005 −0.244392
\(302\) −15.1845 −0.873771
\(303\) 8.98133 0.515964
\(304\) −7.93764 −0.455255
\(305\) −11.7346 −0.671922
\(306\) 1.83637 0.104979
\(307\) 13.4702 0.768785 0.384393 0.923170i \(-0.374411\pi\)
0.384393 + 0.923170i \(0.374411\pi\)
\(308\) −2.10814 −0.120122
\(309\) −9.20908 −0.523886
\(310\) 2.10411 0.119506
\(311\) 4.85030 0.275035 0.137518 0.990499i \(-0.456088\pi\)
0.137518 + 0.990499i \(0.456088\pi\)
\(312\) −11.2792 −0.638557
\(313\) 13.2171 0.747074 0.373537 0.927615i \(-0.378145\pi\)
0.373537 + 0.927615i \(0.378145\pi\)
\(314\) 6.39635 0.360967
\(315\) 4.78252 0.269465
\(316\) 21.4351 1.20582
\(317\) −4.43910 −0.249325 −0.124662 0.992199i \(-0.539785\pi\)
−0.124662 + 0.992199i \(0.539785\pi\)
\(318\) 6.87117 0.385316
\(319\) 0.945305 0.0529269
\(320\) 0.135808 0.00759191
\(321\) 13.5129 0.754215
\(322\) 0 0
\(323\) −13.1943 −0.734153
\(324\) −1.59563 −0.0886463
\(325\) 4.93303 0.273635
\(326\) −7.79867 −0.431929
\(327\) −0.408532 −0.0225919
\(328\) −3.80147 −0.209901
\(329\) −64.6012 −3.56158
\(330\) 0.175670 0.00967031
\(331\) −35.2457 −1.93728 −0.968641 0.248466i \(-0.920073\pi\)
−0.968641 + 0.248466i \(0.920073\pi\)
\(332\) 20.8804 1.14596
\(333\) 4.64027 0.254286
\(334\) −12.2798 −0.671922
\(335\) 3.25200 0.177676
\(336\) 8.30871 0.453278
\(337\) 26.1549 1.42475 0.712375 0.701799i \(-0.247619\pi\)
0.712375 + 0.701799i \(0.247619\pi\)
\(338\) 7.20778 0.392051
\(339\) 16.3292 0.886879
\(340\) −4.60793 −0.249900
\(341\) 0.914093 0.0495009
\(342\) −2.90538 −0.157105
\(343\) 42.4330 2.29117
\(344\) 2.02711 0.109294
\(345\) 0 0
\(346\) 2.80603 0.150853
\(347\) 1.91484 0.102794 0.0513971 0.998678i \(-0.483633\pi\)
0.0513971 + 0.998678i \(0.483633\pi\)
\(348\) −5.46004 −0.292689
\(349\) −7.71255 −0.412843 −0.206422 0.978463i \(-0.566182\pi\)
−0.206422 + 0.978463i \(0.566182\pi\)
\(350\) 3.04120 0.162559
\(351\) 4.93303 0.263306
\(352\) 1.56848 0.0836004
\(353\) 19.6911 1.04805 0.524025 0.851703i \(-0.324430\pi\)
0.524025 + 0.851703i \(0.324430\pi\)
\(354\) 4.31204 0.229182
\(355\) −10.0627 −0.534075
\(356\) −15.4711 −0.819965
\(357\) 13.8112 0.730964
\(358\) −14.6856 −0.776156
\(359\) 11.6997 0.617488 0.308744 0.951145i \(-0.400091\pi\)
0.308744 + 0.951145i \(0.400091\pi\)
\(360\) −2.28646 −0.120507
\(361\) 1.87511 0.0986901
\(362\) −0.154892 −0.00814092
\(363\) −10.9237 −0.573345
\(364\) −37.6447 −1.97312
\(365\) −6.87641 −0.359928
\(366\) −7.46203 −0.390047
\(367\) 7.62881 0.398221 0.199110 0.979977i \(-0.436195\pi\)
0.199110 + 0.979977i \(0.436195\pi\)
\(368\) 0 0
\(369\) 1.66260 0.0865516
\(370\) 2.95075 0.153402
\(371\) 51.6773 2.68295
\(372\) −5.27975 −0.273742
\(373\) 32.3600 1.67554 0.837769 0.546026i \(-0.183860\pi\)
0.837769 + 0.546026i \(0.183860\pi\)
\(374\) 0.507307 0.0262322
\(375\) 1.00000 0.0516398
\(376\) 30.8850 1.59277
\(377\) 16.8802 0.869372
\(378\) 3.04120 0.156422
\(379\) 25.0429 1.28637 0.643185 0.765711i \(-0.277613\pi\)
0.643185 + 0.765711i \(0.277613\pi\)
\(380\) 7.29033 0.373986
\(381\) 20.5073 1.05062
\(382\) −3.85275 −0.197124
\(383\) 16.0017 0.817649 0.408824 0.912613i \(-0.365939\pi\)
0.408824 + 0.912613i \(0.365939\pi\)
\(384\) −11.2690 −0.575068
\(385\) 1.32119 0.0673343
\(386\) −14.4666 −0.736330
\(387\) −0.886572 −0.0450670
\(388\) 0.0687622 0.00349087
\(389\) 5.29456 0.268445 0.134223 0.990951i \(-0.457146\pi\)
0.134223 + 0.990951i \(0.457146\pi\)
\(390\) 3.13691 0.158844
\(391\) 0 0
\(392\) −36.2918 −1.83302
\(393\) 3.68291 0.185778
\(394\) 11.7172 0.590303
\(395\) −13.4336 −0.675920
\(396\) −0.440801 −0.0221511
\(397\) −12.7457 −0.639687 −0.319843 0.947470i \(-0.603630\pi\)
−0.319843 + 0.947470i \(0.603630\pi\)
\(398\) −1.87885 −0.0941783
\(399\) −21.8510 −1.09392
\(400\) 1.73731 0.0868654
\(401\) −2.33281 −0.116495 −0.0582474 0.998302i \(-0.518551\pi\)
−0.0582474 + 0.998302i \(0.518551\pi\)
\(402\) 2.06794 0.103140
\(403\) 16.3228 0.813096
\(404\) −14.3309 −0.712989
\(405\) 1.00000 0.0496904
\(406\) 10.4066 0.516469
\(407\) 1.28190 0.0635413
\(408\) −6.60293 −0.326894
\(409\) 3.07590 0.152093 0.0760466 0.997104i \(-0.475770\pi\)
0.0760466 + 0.997104i \(0.475770\pi\)
\(410\) 1.05725 0.0522137
\(411\) 15.6536 0.772137
\(412\) 14.6943 0.723937
\(413\) 32.4304 1.59579
\(414\) 0 0
\(415\) −13.0860 −0.642366
\(416\) 28.0081 1.37321
\(417\) 3.88597 0.190297
\(418\) −0.802624 −0.0392576
\(419\) −27.6788 −1.35220 −0.676098 0.736811i \(-0.736331\pi\)
−0.676098 + 0.736811i \(0.736331\pi\)
\(420\) −7.63115 −0.372362
\(421\) 23.1877 1.13010 0.565051 0.825056i \(-0.308857\pi\)
0.565051 + 0.825056i \(0.308857\pi\)
\(422\) 0.131455 0.00639911
\(423\) −13.5078 −0.656770
\(424\) −24.7062 −1.19984
\(425\) 2.88784 0.140081
\(426\) −6.39889 −0.310027
\(427\) −56.1210 −2.71589
\(428\) −21.5616 −1.04222
\(429\) 1.36277 0.0657953
\(430\) −0.563770 −0.0271874
\(431\) −20.5619 −0.990430 −0.495215 0.868771i \(-0.664911\pi\)
−0.495215 + 0.868771i \(0.664911\pi\)
\(432\) 1.73731 0.0835863
\(433\) −2.82470 −0.135747 −0.0678733 0.997694i \(-0.521621\pi\)
−0.0678733 + 0.997694i \(0.521621\pi\)
\(434\) 10.0630 0.483038
\(435\) 3.42186 0.164066
\(436\) 0.651867 0.0312188
\(437\) 0 0
\(438\) −4.37270 −0.208936
\(439\) 12.2548 0.584891 0.292445 0.956282i \(-0.405531\pi\)
0.292445 + 0.956282i \(0.405531\pi\)
\(440\) −0.631645 −0.0301125
\(441\) 15.8725 0.755834
\(442\) 9.05889 0.430888
\(443\) 5.69816 0.270728 0.135364 0.990796i \(-0.456780\pi\)
0.135364 + 0.990796i \(0.456780\pi\)
\(444\) −7.40417 −0.351387
\(445\) 9.69588 0.459629
\(446\) −6.61710 −0.313329
\(447\) −2.36121 −0.111682
\(448\) 0.649505 0.0306862
\(449\) −28.0191 −1.32230 −0.661151 0.750253i \(-0.729932\pi\)
−0.661151 + 0.750253i \(0.729932\pi\)
\(450\) 0.635899 0.0299766
\(451\) 0.459302 0.0216277
\(452\) −26.0554 −1.22554
\(453\) −23.8788 −1.12192
\(454\) 17.3665 0.815052
\(455\) 23.5923 1.10603
\(456\) 10.4467 0.489210
\(457\) −32.3063 −1.51123 −0.755613 0.655018i \(-0.772661\pi\)
−0.755613 + 0.655018i \(0.772661\pi\)
\(458\) −3.25591 −0.152139
\(459\) 2.88784 0.134793
\(460\) 0 0
\(461\) 10.3298 0.481108 0.240554 0.970636i \(-0.422671\pi\)
0.240554 + 0.970636i \(0.422671\pi\)
\(462\) 0.840146 0.0390871
\(463\) 8.72911 0.405676 0.202838 0.979212i \(-0.434984\pi\)
0.202838 + 0.979212i \(0.434984\pi\)
\(464\) 5.94483 0.275982
\(465\) 3.30888 0.153446
\(466\) 9.43361 0.437004
\(467\) 40.8983 1.89255 0.946274 0.323367i \(-0.104815\pi\)
0.946274 + 0.323367i \(0.104815\pi\)
\(468\) −7.87130 −0.363851
\(469\) 15.5527 0.718159
\(470\) −8.58958 −0.396208
\(471\) 10.0588 0.463483
\(472\) −15.5045 −0.713653
\(473\) −0.244920 −0.0112614
\(474\) −8.54243 −0.392367
\(475\) −4.56893 −0.209637
\(476\) −22.0375 −1.01009
\(477\) 10.8054 0.494747
\(478\) −2.08644 −0.0954314
\(479\) −6.34911 −0.290098 −0.145049 0.989424i \(-0.546334\pi\)
−0.145049 + 0.989424i \(0.546334\pi\)
\(480\) 5.67767 0.259149
\(481\) 22.8906 1.04372
\(482\) 4.00587 0.182462
\(483\) 0 0
\(484\) 17.4302 0.792281
\(485\) −0.0430940 −0.00195680
\(486\) 0.635899 0.0288450
\(487\) 31.0880 1.40873 0.704365 0.709837i \(-0.251232\pi\)
0.704365 + 0.709837i \(0.251232\pi\)
\(488\) 26.8307 1.21457
\(489\) −12.2640 −0.554598
\(490\) 10.0933 0.455969
\(491\) −39.1888 −1.76857 −0.884283 0.466951i \(-0.845353\pi\)
−0.884283 + 0.466951i \(0.845353\pi\)
\(492\) −2.65290 −0.119602
\(493\) 9.88179 0.445054
\(494\) −14.3323 −0.644841
\(495\) 0.276255 0.0124167
\(496\) 5.74854 0.258117
\(497\) −48.1253 −2.15871
\(498\) −8.32136 −0.372889
\(499\) 36.0301 1.61293 0.806464 0.591284i \(-0.201379\pi\)
0.806464 + 0.591284i \(0.201379\pi\)
\(500\) −1.59563 −0.0713589
\(501\) −19.3110 −0.862750
\(502\) −10.3733 −0.462985
\(503\) −11.2088 −0.499774 −0.249887 0.968275i \(-0.580393\pi\)
−0.249887 + 0.968275i \(0.580393\pi\)
\(504\) −10.9350 −0.487085
\(505\) 8.98133 0.399664
\(506\) 0 0
\(507\) 11.3348 0.503395
\(508\) −32.7222 −1.45181
\(509\) 14.4226 0.639269 0.319635 0.947541i \(-0.396440\pi\)
0.319635 + 0.947541i \(0.396440\pi\)
\(510\) 1.83637 0.0813160
\(511\) −32.8866 −1.45482
\(512\) 17.8084 0.787029
\(513\) −4.56893 −0.201723
\(514\) 9.54357 0.420949
\(515\) −9.20908 −0.405801
\(516\) 1.41464 0.0622762
\(517\) −3.73158 −0.164115
\(518\) 14.1120 0.620046
\(519\) 4.41269 0.193696
\(520\) −11.2792 −0.494624
\(521\) −21.7210 −0.951613 −0.475806 0.879550i \(-0.657844\pi\)
−0.475806 + 0.879550i \(0.657844\pi\)
\(522\) 2.17596 0.0952391
\(523\) −39.5934 −1.73130 −0.865650 0.500650i \(-0.833094\pi\)
−0.865650 + 0.500650i \(0.833094\pi\)
\(524\) −5.87657 −0.256719
\(525\) 4.78252 0.208726
\(526\) −15.0232 −0.655043
\(527\) 9.55551 0.416245
\(528\) 0.479939 0.0208867
\(529\) 0 0
\(530\) 6.87117 0.298465
\(531\) 6.78102 0.294271
\(532\) 34.8662 1.51164
\(533\) 8.20167 0.355254
\(534\) 6.16560 0.266812
\(535\) 13.5129 0.584213
\(536\) −7.43555 −0.321167
\(537\) −23.0942 −0.996587
\(538\) 0.307973 0.0132777
\(539\) 4.38485 0.188869
\(540\) −1.59563 −0.0686651
\(541\) 27.4309 1.17935 0.589673 0.807642i \(-0.299257\pi\)
0.589673 + 0.807642i \(0.299257\pi\)
\(542\) 0.608753 0.0261482
\(543\) −0.243579 −0.0104530
\(544\) 16.3962 0.702982
\(545\) −0.408532 −0.0174996
\(546\) 15.0023 0.642041
\(547\) 40.7538 1.74251 0.871253 0.490834i \(-0.163308\pi\)
0.871253 + 0.490834i \(0.163308\pi\)
\(548\) −24.9774 −1.06698
\(549\) −11.7346 −0.500821
\(550\) 0.175670 0.00749059
\(551\) −15.6342 −0.666041
\(552\) 0 0
\(553\) −64.2466 −2.73205
\(554\) −12.7975 −0.543716
\(555\) 4.64027 0.196969
\(556\) −6.20058 −0.262963
\(557\) −34.1084 −1.44522 −0.722610 0.691256i \(-0.757058\pi\)
−0.722610 + 0.691256i \(0.757058\pi\)
\(558\) 2.10411 0.0890742
\(559\) −4.37349 −0.184979
\(560\) 8.30871 0.351107
\(561\) 0.797779 0.0336823
\(562\) 10.4997 0.442904
\(563\) 23.0379 0.970932 0.485466 0.874255i \(-0.338650\pi\)
0.485466 + 0.874255i \(0.338650\pi\)
\(564\) 21.5534 0.907563
\(565\) 16.3292 0.686973
\(566\) 2.70850 0.113847
\(567\) 4.78252 0.200847
\(568\) 23.0080 0.965396
\(569\) 10.3930 0.435699 0.217849 0.975982i \(-0.430096\pi\)
0.217849 + 0.975982i \(0.430096\pi\)
\(570\) −2.90538 −0.121693
\(571\) −22.4405 −0.939104 −0.469552 0.882905i \(-0.655585\pi\)
−0.469552 + 0.882905i \(0.655585\pi\)
\(572\) −2.17448 −0.0909197
\(573\) −6.05875 −0.253108
\(574\) 5.05631 0.211046
\(575\) 0 0
\(576\) 0.135808 0.00565867
\(577\) −16.0318 −0.667411 −0.333706 0.942677i \(-0.608299\pi\)
−0.333706 + 0.942677i \(0.608299\pi\)
\(578\) −5.50712 −0.229066
\(579\) −22.7498 −0.945451
\(580\) −5.46004 −0.226716
\(581\) −62.5840 −2.59642
\(582\) −0.0274034 −0.00113591
\(583\) 2.98505 0.123628
\(584\) 15.7226 0.650607
\(585\) 4.93303 0.203956
\(586\) 15.1134 0.624331
\(587\) 39.5757 1.63346 0.816731 0.577018i \(-0.195784\pi\)
0.816731 + 0.577018i \(0.195784\pi\)
\(588\) −25.3267 −1.04446
\(589\) −15.1180 −0.622928
\(590\) 4.31204 0.177524
\(591\) 18.4262 0.757951
\(592\) 8.06159 0.331329
\(593\) 3.04461 0.125027 0.0625137 0.998044i \(-0.480088\pi\)
0.0625137 + 0.998044i \(0.480088\pi\)
\(594\) 0.175670 0.00720783
\(595\) 13.8112 0.566202
\(596\) 3.76763 0.154328
\(597\) −2.95464 −0.120925
\(598\) 0 0
\(599\) −1.83121 −0.0748213 −0.0374107 0.999300i \(-0.511911\pi\)
−0.0374107 + 0.999300i \(0.511911\pi\)
\(600\) −2.28646 −0.0933443
\(601\) 9.28980 0.378939 0.189469 0.981887i \(-0.439323\pi\)
0.189469 + 0.981887i \(0.439323\pi\)
\(602\) −2.69624 −0.109891
\(603\) 3.25200 0.132432
\(604\) 38.1018 1.55034
\(605\) −10.9237 −0.444111
\(606\) 5.71122 0.232002
\(607\) 40.1078 1.62793 0.813963 0.580917i \(-0.197306\pi\)
0.813963 + 0.580917i \(0.197306\pi\)
\(608\) −25.9409 −1.05204
\(609\) 16.3651 0.663149
\(610\) −7.46203 −0.302129
\(611\) −66.6342 −2.69573
\(612\) −4.60793 −0.186265
\(613\) −28.0144 −1.13149 −0.565745 0.824580i \(-0.691411\pi\)
−0.565745 + 0.824580i \(0.691411\pi\)
\(614\) 8.56569 0.345683
\(615\) 1.66260 0.0670426
\(616\) −3.02085 −0.121714
\(617\) 20.4486 0.823231 0.411615 0.911358i \(-0.364965\pi\)
0.411615 + 0.911358i \(0.364965\pi\)
\(618\) −5.85604 −0.235565
\(619\) 3.74645 0.150582 0.0752912 0.997162i \(-0.476011\pi\)
0.0752912 + 0.997162i \(0.476011\pi\)
\(620\) −5.27975 −0.212040
\(621\) 0 0
\(622\) 3.08430 0.123669
\(623\) 46.3708 1.85781
\(624\) 8.57019 0.343082
\(625\) 1.00000 0.0400000
\(626\) 8.40474 0.335921
\(627\) −1.26219 −0.0504069
\(628\) −16.0501 −0.640468
\(629\) 13.4004 0.534308
\(630\) 3.04120 0.121164
\(631\) 12.2854 0.489074 0.244537 0.969640i \(-0.421364\pi\)
0.244537 + 0.969640i \(0.421364\pi\)
\(632\) 30.7155 1.22180
\(633\) 0.206723 0.00821649
\(634\) −2.82282 −0.112108
\(635\) 20.5073 0.813809
\(636\) −17.2415 −0.683671
\(637\) 78.2996 3.10234
\(638\) 0.601119 0.0237985
\(639\) −10.0627 −0.398076
\(640\) −11.2690 −0.445446
\(641\) −45.8424 −1.81066 −0.905332 0.424704i \(-0.860378\pi\)
−0.905332 + 0.424704i \(0.860378\pi\)
\(642\) 8.59282 0.339132
\(643\) −42.4023 −1.67219 −0.836093 0.548588i \(-0.815165\pi\)
−0.836093 + 0.548588i \(0.815165\pi\)
\(644\) 0 0
\(645\) −0.886572 −0.0349087
\(646\) −8.39027 −0.330111
\(647\) −24.0474 −0.945400 −0.472700 0.881224i \(-0.656721\pi\)
−0.472700 + 0.881224i \(0.656721\pi\)
\(648\) −2.28646 −0.0898206
\(649\) 1.87329 0.0735330
\(650\) 3.13691 0.123040
\(651\) 15.8248 0.620222
\(652\) 19.5689 0.766376
\(653\) 4.66651 0.182615 0.0913074 0.995823i \(-0.470895\pi\)
0.0913074 + 0.995823i \(0.470895\pi\)
\(654\) −0.259785 −0.0101584
\(655\) 3.68291 0.143903
\(656\) 2.88845 0.112775
\(657\) −6.87641 −0.268274
\(658\) −41.0798 −1.60146
\(659\) 27.5539 1.07335 0.536674 0.843789i \(-0.319680\pi\)
0.536674 + 0.843789i \(0.319680\pi\)
\(660\) −0.440801 −0.0171581
\(661\) 3.61245 0.140508 0.0702539 0.997529i \(-0.477619\pi\)
0.0702539 + 0.997529i \(0.477619\pi\)
\(662\) −22.4127 −0.871095
\(663\) 14.2458 0.553261
\(664\) 29.9206 1.16114
\(665\) −21.8510 −0.847345
\(666\) 2.95075 0.114339
\(667\) 0 0
\(668\) 30.8132 1.19220
\(669\) −10.4059 −0.402315
\(670\) 2.06794 0.0798915
\(671\) −3.24174 −0.125146
\(672\) 27.1536 1.04747
\(673\) −1.85557 −0.0715269 −0.0357634 0.999360i \(-0.511386\pi\)
−0.0357634 + 0.999360i \(0.511386\pi\)
\(674\) 16.6319 0.640637
\(675\) 1.00000 0.0384900
\(676\) −18.0862 −0.695621
\(677\) −34.6412 −1.33137 −0.665684 0.746233i \(-0.731860\pi\)
−0.665684 + 0.746233i \(0.731860\pi\)
\(678\) 10.3837 0.398784
\(679\) −0.206098 −0.00790931
\(680\) −6.60293 −0.253211
\(681\) 27.3102 1.04653
\(682\) 0.581271 0.0222580
\(683\) −40.7572 −1.55953 −0.779765 0.626072i \(-0.784661\pi\)
−0.779765 + 0.626072i \(0.784661\pi\)
\(684\) 7.29033 0.278753
\(685\) 15.6536 0.598094
\(686\) 26.9831 1.03022
\(687\) −5.12017 −0.195347
\(688\) −1.54025 −0.0587214
\(689\) 53.3036 2.03071
\(690\) 0 0
\(691\) −34.9175 −1.32832 −0.664162 0.747589i \(-0.731211\pi\)
−0.664162 + 0.747589i \(0.731211\pi\)
\(692\) −7.04104 −0.267660
\(693\) 1.32119 0.0501880
\(694\) 1.21765 0.0462212
\(695\) 3.88597 0.147403
\(696\) −7.82395 −0.296566
\(697\) 4.80133 0.181863
\(698\) −4.90440 −0.185634
\(699\) 14.8351 0.561114
\(700\) −7.63115 −0.288430
\(701\) 41.4901 1.56706 0.783529 0.621355i \(-0.213418\pi\)
0.783529 + 0.621355i \(0.213418\pi\)
\(702\) 3.13691 0.118395
\(703\) −21.2011 −0.799614
\(704\) 0.0375176 0.00141400
\(705\) −13.5078 −0.508732
\(706\) 12.5215 0.471254
\(707\) 42.9534 1.61543
\(708\) −10.8200 −0.406641
\(709\) −25.7260 −0.966159 −0.483079 0.875577i \(-0.660482\pi\)
−0.483079 + 0.875577i \(0.660482\pi\)
\(710\) −6.39889 −0.240146
\(711\) −13.4336 −0.503801
\(712\) −22.1692 −0.830827
\(713\) 0 0
\(714\) 8.78250 0.328677
\(715\) 1.36277 0.0509648
\(716\) 36.8498 1.37714
\(717\) −3.28108 −0.122534
\(718\) 7.43985 0.277653
\(719\) −33.4004 −1.24563 −0.622813 0.782371i \(-0.714010\pi\)
−0.622813 + 0.782371i \(0.714010\pi\)
\(720\) 1.73731 0.0647457
\(721\) −44.0426 −1.64023
\(722\) 1.19238 0.0443758
\(723\) 6.29954 0.234282
\(724\) 0.388662 0.0144445
\(725\) 3.42186 0.127085
\(726\) −6.94636 −0.257804
\(727\) 7.11992 0.264063 0.132032 0.991246i \(-0.457850\pi\)
0.132032 + 0.991246i \(0.457850\pi\)
\(728\) −53.9429 −1.99926
\(729\) 1.00000 0.0370370
\(730\) −4.37270 −0.161841
\(731\) −2.56028 −0.0946953
\(732\) 18.7241 0.692064
\(733\) −13.2309 −0.488695 −0.244347 0.969688i \(-0.578574\pi\)
−0.244347 + 0.969688i \(0.578574\pi\)
\(734\) 4.85115 0.179059
\(735\) 15.8725 0.585466
\(736\) 0 0
\(737\) 0.898379 0.0330922
\(738\) 1.05725 0.0389178
\(739\) 8.50028 0.312688 0.156344 0.987703i \(-0.450029\pi\)
0.156344 + 0.987703i \(0.450029\pi\)
\(740\) −7.40417 −0.272183
\(741\) −22.5387 −0.827978
\(742\) 32.8615 1.20638
\(743\) 11.5939 0.425340 0.212670 0.977124i \(-0.431784\pi\)
0.212670 + 0.977124i \(0.431784\pi\)
\(744\) −7.56561 −0.277369
\(745\) −2.36121 −0.0865081
\(746\) 20.5777 0.753403
\(747\) −13.0860 −0.478791
\(748\) −1.27296 −0.0465441
\(749\) 64.6256 2.36137
\(750\) 0.635899 0.0232197
\(751\) 6.18707 0.225769 0.112885 0.993608i \(-0.463991\pi\)
0.112885 + 0.993608i \(0.463991\pi\)
\(752\) −23.4672 −0.855759
\(753\) −16.3129 −0.594474
\(754\) 10.7341 0.390912
\(755\) −23.8788 −0.869039
\(756\) −7.63115 −0.277542
\(757\) −9.34373 −0.339604 −0.169802 0.985478i \(-0.554313\pi\)
−0.169802 + 0.985478i \(0.554313\pi\)
\(758\) 15.9248 0.578414
\(759\) 0 0
\(760\) 10.4467 0.378940
\(761\) −28.3362 −1.02719 −0.513593 0.858034i \(-0.671686\pi\)
−0.513593 + 0.858034i \(0.671686\pi\)
\(762\) 13.0406 0.472411
\(763\) −1.95381 −0.0707328
\(764\) 9.66754 0.349759
\(765\) 2.88784 0.104410
\(766\) 10.1755 0.367654
\(767\) 33.4510 1.20784
\(768\) −7.43755 −0.268379
\(769\) 8.17561 0.294820 0.147410 0.989075i \(-0.452906\pi\)
0.147410 + 0.989075i \(0.452906\pi\)
\(770\) 0.840146 0.0302767
\(771\) 15.0080 0.540500
\(772\) 36.3004 1.30648
\(773\) 41.0583 1.47677 0.738383 0.674382i \(-0.235590\pi\)
0.738383 + 0.674382i \(0.235590\pi\)
\(774\) −0.563770 −0.0202643
\(775\) 3.30888 0.118858
\(776\) 0.0985326 0.00353712
\(777\) 22.1922 0.796141
\(778\) 3.36681 0.120706
\(779\) −7.59631 −0.272166
\(780\) −7.87130 −0.281838
\(781\) −2.77988 −0.0994719
\(782\) 0 0
\(783\) 3.42186 0.122287
\(784\) 27.5754 0.984837
\(785\) 10.0588 0.359012
\(786\) 2.34196 0.0835348
\(787\) −2.26628 −0.0807842 −0.0403921 0.999184i \(-0.512861\pi\)
−0.0403921 + 0.999184i \(0.512861\pi\)
\(788\) −29.4014 −1.04738
\(789\) −23.6251 −0.841077
\(790\) −8.54243 −0.303926
\(791\) 78.0946 2.77672
\(792\) −0.631645 −0.0224445
\(793\) −57.8872 −2.05563
\(794\) −8.10496 −0.287634
\(795\) 10.8054 0.383230
\(796\) 4.71452 0.167102
\(797\) −1.52558 −0.0540389 −0.0270194 0.999635i \(-0.508602\pi\)
−0.0270194 + 0.999635i \(0.508602\pi\)
\(798\) −13.8950 −0.491879
\(799\) −39.0083 −1.38001
\(800\) 5.67767 0.200736
\(801\) 9.69588 0.342587
\(802\) −1.48343 −0.0523817
\(803\) −1.89964 −0.0670368
\(804\) −5.18899 −0.183002
\(805\) 0 0
\(806\) 10.3796 0.365608
\(807\) 0.484312 0.0170486
\(808\) −20.5354 −0.722434
\(809\) −45.6859 −1.60623 −0.803115 0.595823i \(-0.796826\pi\)
−0.803115 + 0.595823i \(0.796826\pi\)
\(810\) 0.635899 0.0223432
\(811\) 7.29703 0.256233 0.128117 0.991759i \(-0.459107\pi\)
0.128117 + 0.991759i \(0.459107\pi\)
\(812\) −26.1127 −0.916377
\(813\) 0.957311 0.0335744
\(814\) 0.815157 0.0285712
\(815\) −12.2640 −0.429590
\(816\) 5.01707 0.175633
\(817\) 4.05068 0.141716
\(818\) 1.95596 0.0683885
\(819\) 23.5923 0.824382
\(820\) −2.65290 −0.0926434
\(821\) −46.7060 −1.63005 −0.815025 0.579426i \(-0.803277\pi\)
−0.815025 + 0.579426i \(0.803277\pi\)
\(822\) 9.95413 0.347190
\(823\) 35.2111 1.22738 0.613691 0.789546i \(-0.289684\pi\)
0.613691 + 0.789546i \(0.289684\pi\)
\(824\) 21.0562 0.733527
\(825\) 0.276255 0.00961795
\(826\) 20.6224 0.717546
\(827\) −14.0766 −0.489491 −0.244746 0.969587i \(-0.578704\pi\)
−0.244746 + 0.969587i \(0.578704\pi\)
\(828\) 0 0
\(829\) −33.1502 −1.15135 −0.575677 0.817677i \(-0.695262\pi\)
−0.575677 + 0.817677i \(0.695262\pi\)
\(830\) −8.32136 −0.288839
\(831\) −20.1251 −0.698133
\(832\) 0.669946 0.0232262
\(833\) 45.8373 1.58817
\(834\) 2.47108 0.0855667
\(835\) −19.3110 −0.668283
\(836\) 2.01399 0.0696552
\(837\) 3.30888 0.114372
\(838\) −17.6009 −0.608013
\(839\) 3.44347 0.118882 0.0594408 0.998232i \(-0.481068\pi\)
0.0594408 + 0.998232i \(0.481068\pi\)
\(840\) −10.9350 −0.377295
\(841\) −17.2909 −0.596236
\(842\) 14.7451 0.508148
\(843\) 16.5116 0.568691
\(844\) −0.329853 −0.0113540
\(845\) 11.3348 0.389928
\(846\) −8.58958 −0.295316
\(847\) −52.2428 −1.79508
\(848\) 18.7724 0.644647
\(849\) 4.25932 0.146180
\(850\) 1.83637 0.0629871
\(851\) 0 0
\(852\) 16.0564 0.550084
\(853\) 3.90205 0.133603 0.0668017 0.997766i \(-0.478720\pi\)
0.0668017 + 0.997766i \(0.478720\pi\)
\(854\) −35.6873 −1.22119
\(855\) −4.56893 −0.156254
\(856\) −30.8966 −1.05603
\(857\) 15.8206 0.540423 0.270212 0.962801i \(-0.412906\pi\)
0.270212 + 0.962801i \(0.412906\pi\)
\(858\) 0.866585 0.0295847
\(859\) −34.2881 −1.16990 −0.584948 0.811071i \(-0.698885\pi\)
−0.584948 + 0.811071i \(0.698885\pi\)
\(860\) 1.41464 0.0482389
\(861\) 7.95143 0.270984
\(862\) −13.0753 −0.445345
\(863\) 8.05614 0.274234 0.137117 0.990555i \(-0.456216\pi\)
0.137117 + 0.990555i \(0.456216\pi\)
\(864\) 5.67767 0.193158
\(865\) 4.41269 0.150036
\(866\) −1.79623 −0.0610382
\(867\) −8.66038 −0.294122
\(868\) −25.2505 −0.857059
\(869\) −3.71110 −0.125891
\(870\) 2.17596 0.0737719
\(871\) 16.0422 0.543569
\(872\) 0.934092 0.0316323
\(873\) −0.0430940 −0.00145851
\(874\) 0 0
\(875\) 4.78252 0.161679
\(876\) 10.9722 0.370717
\(877\) 13.2393 0.447060 0.223530 0.974697i \(-0.428242\pi\)
0.223530 + 0.974697i \(0.428242\pi\)
\(878\) 7.79283 0.262995
\(879\) 23.7671 0.801643
\(880\) 0.479939 0.0161788
\(881\) −23.1953 −0.781469 −0.390734 0.920503i \(-0.627779\pi\)
−0.390734 + 0.920503i \(0.627779\pi\)
\(882\) 10.0933 0.339860
\(883\) −23.7129 −0.798003 −0.399002 0.916950i \(-0.630643\pi\)
−0.399002 + 0.916950i \(0.630643\pi\)
\(884\) −22.7311 −0.764529
\(885\) 6.78102 0.227941
\(886\) 3.62345 0.121732
\(887\) 29.5497 0.992182 0.496091 0.868271i \(-0.334768\pi\)
0.496091 + 0.868271i \(0.334768\pi\)
\(888\) −10.6098 −0.356042
\(889\) 98.0768 3.28939
\(890\) 6.16560 0.206671
\(891\) 0.276255 0.00925488
\(892\) 16.6040 0.555943
\(893\) 61.7160 2.06525
\(894\) −1.50149 −0.0502174
\(895\) −23.0942 −0.771953
\(896\) −53.8941 −1.80048
\(897\) 0 0
\(898\) −17.8173 −0.594571
\(899\) 11.3225 0.377627
\(900\) −1.59563 −0.0531878
\(901\) 31.2044 1.03957
\(902\) 0.292069 0.00972485
\(903\) −4.24005 −0.141100
\(904\) −37.3360 −1.24178
\(905\) −0.243579 −0.00809684
\(906\) −15.1845 −0.504472
\(907\) 2.44003 0.0810197 0.0405099 0.999179i \(-0.487102\pi\)
0.0405099 + 0.999179i \(0.487102\pi\)
\(908\) −43.5771 −1.44616
\(909\) 8.98133 0.297892
\(910\) 15.0023 0.497322
\(911\) −8.56162 −0.283659 −0.141830 0.989891i \(-0.545298\pi\)
−0.141830 + 0.989891i \(0.545298\pi\)
\(912\) −7.93764 −0.262841
\(913\) −3.61506 −0.119641
\(914\) −20.5436 −0.679520
\(915\) −11.7346 −0.387934
\(916\) 8.16991 0.269941
\(917\) 17.6136 0.581652
\(918\) 1.83637 0.0606094
\(919\) −47.2959 −1.56015 −0.780073 0.625688i \(-0.784818\pi\)
−0.780073 + 0.625688i \(0.784818\pi\)
\(920\) 0 0
\(921\) 13.4702 0.443858
\(922\) 6.56872 0.216329
\(923\) −49.6398 −1.63391
\(924\) −2.10814 −0.0693527
\(925\) 4.64027 0.152571
\(926\) 5.55083 0.182412
\(927\) −9.20908 −0.302466
\(928\) 19.4282 0.637762
\(929\) −42.6047 −1.39781 −0.698907 0.715213i \(-0.746330\pi\)
−0.698907 + 0.715213i \(0.746330\pi\)
\(930\) 2.10411 0.0689966
\(931\) −72.5204 −2.37676
\(932\) −23.6713 −0.775381
\(933\) 4.85030 0.158792
\(934\) 26.0072 0.850981
\(935\) 0.797779 0.0260902
\(936\) −11.2792 −0.368671
\(937\) 8.97008 0.293040 0.146520 0.989208i \(-0.453193\pi\)
0.146520 + 0.989208i \(0.453193\pi\)
\(938\) 9.88997 0.322919
\(939\) 13.2171 0.431324
\(940\) 21.5534 0.702996
\(941\) −6.68773 −0.218014 −0.109007 0.994041i \(-0.534767\pi\)
−0.109007 + 0.994041i \(0.534767\pi\)
\(942\) 6.39635 0.208404
\(943\) 0 0
\(944\) 11.7807 0.383430
\(945\) 4.78252 0.155575
\(946\) −0.155744 −0.00506368
\(947\) 6.67892 0.217036 0.108518 0.994094i \(-0.465390\pi\)
0.108518 + 0.994094i \(0.465390\pi\)
\(948\) 21.4351 0.696181
\(949\) −33.9215 −1.10114
\(950\) −2.90538 −0.0942629
\(951\) −4.43910 −0.143948
\(952\) −31.5786 −1.02347
\(953\) 54.3566 1.76078 0.880391 0.474248i \(-0.157280\pi\)
0.880391 + 0.474248i \(0.157280\pi\)
\(954\) 6.87117 0.222462
\(955\) −6.05875 −0.196057
\(956\) 5.23540 0.169325
\(957\) 0.945305 0.0305574
\(958\) −4.03739 −0.130442
\(959\) 74.8638 2.41748
\(960\) 0.135808 0.00438319
\(961\) −20.0513 −0.646817
\(962\) 14.5561 0.469308
\(963\) 13.5129 0.435446
\(964\) −10.0518 −0.323745
\(965\) −22.7498 −0.732343
\(966\) 0 0
\(967\) 17.7075 0.569436 0.284718 0.958611i \(-0.408100\pi\)
0.284718 + 0.958611i \(0.408100\pi\)
\(968\) 24.9766 0.802777
\(969\) −13.1943 −0.423863
\(970\) −0.0274034 −0.000879871 0
\(971\) −22.6800 −0.727835 −0.363917 0.931431i \(-0.618561\pi\)
−0.363917 + 0.931431i \(0.618561\pi\)
\(972\) −1.59563 −0.0511799
\(973\) 18.5847 0.595799
\(974\) 19.7688 0.633434
\(975\) 4.93303 0.157983
\(976\) −20.3866 −0.652561
\(977\) 17.8693 0.571689 0.285844 0.958276i \(-0.407726\pi\)
0.285844 + 0.958276i \(0.407726\pi\)
\(978\) −7.79867 −0.249374
\(979\) 2.67853 0.0856063
\(980\) −25.3267 −0.809032
\(981\) −0.408532 −0.0130434
\(982\) −24.9201 −0.795233
\(983\) −17.0482 −0.543754 −0.271877 0.962332i \(-0.587644\pi\)
−0.271877 + 0.962332i \(0.587644\pi\)
\(984\) −3.80147 −0.121187
\(985\) 18.4262 0.587106
\(986\) 6.28382 0.200118
\(987\) −64.6012 −2.05628
\(988\) 35.9634 1.14415
\(989\) 0 0
\(990\) 0.175670 0.00558316
\(991\) −20.9252 −0.664711 −0.332355 0.943154i \(-0.607843\pi\)
−0.332355 + 0.943154i \(0.607843\pi\)
\(992\) 18.7867 0.596479
\(993\) −35.2457 −1.11849
\(994\) −30.6028 −0.970662
\(995\) −2.95464 −0.0936684
\(996\) 20.8804 0.661621
\(997\) 1.58791 0.0502895 0.0251448 0.999684i \(-0.491995\pi\)
0.0251448 + 0.999684i \(0.491995\pi\)
\(998\) 22.9115 0.725250
\(999\) 4.64027 0.146812
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7935.2.a.bi.1.5 yes 8
23.22 odd 2 7935.2.a.bh.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7935.2.a.bh.1.5 8 23.22 odd 2
7935.2.a.bi.1.5 yes 8 1.1 even 1 trivial