L(s) = 1 | + (1.37 − 0.331i)2-s + (1.78 − 0.910i)4-s − 2i·5-s − 3.02·7-s + (2.14 − 1.84i)8-s + (−0.662 − 2.74i)10-s + (2.33 − 2.35i)11-s − 1.32·13-s + (−4.15 + i)14-s + (2.34 − 3.24i)16-s + 1.69i·17-s − 7.04i·19-s + (−1.82 − 3.56i)20-s + (2.42 − 4.01i)22-s + 3.12i·23-s + ⋯ |
L(s) = 1 | + (0.972 − 0.234i)2-s + (0.890 − 0.455i)4-s − 0.894i·5-s − 1.14·7-s + (0.759 − 0.650i)8-s + (−0.209 − 0.869i)10-s + (0.703 − 0.711i)11-s − 0.367·13-s + (−1.10 + 0.267i)14-s + (0.585 − 0.810i)16-s + 0.411i·17-s − 1.61i·19-s + (−0.407 − 0.796i)20-s + (0.517 − 0.855i)22-s + 0.651i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0708 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0708 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.69903 - 1.82398i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.69903 - 1.82398i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.37 + 0.331i)T \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (-2.33 + 2.35i)T \) |
good | 5 | \( 1 + 2iT - 5T^{2} \) |
| 7 | \( 1 + 3.02T + 7T^{2} \) |
| 13 | \( 1 + 1.32T + 13T^{2} \) |
| 17 | \( 1 - 1.69iT - 17T^{2} \) |
| 19 | \( 1 + 7.04iT - 19T^{2} \) |
| 23 | \( 1 - 3.12iT - 23T^{2} \) |
| 29 | \( 1 + 1.54T + 29T^{2} \) |
| 31 | \( 1 + 8.30iT - 31T^{2} \) |
| 37 | \( 1 - 4.66iT - 37T^{2} \) |
| 41 | \( 1 - 7.73iT - 41T^{2} \) |
| 43 | \( 1 - 3.95iT - 43T^{2} \) |
| 47 | \( 1 + 6iT - 47T^{2} \) |
| 53 | \( 1 - 8.24iT - 53T^{2} \) |
| 59 | \( 1 - 11.9T + 59T^{2} \) |
| 61 | \( 1 - 8.10T + 61T^{2} \) |
| 67 | \( 1 - 6.24T + 67T^{2} \) |
| 71 | \( 1 - 12.2iT - 71T^{2} \) |
| 73 | \( 1 - 3.08iT - 73T^{2} \) |
| 79 | \( 1 + 12.4T + 79T^{2} \) |
| 83 | \( 1 - 4.71iT - 83T^{2} \) |
| 89 | \( 1 - 16.6T + 89T^{2} \) |
| 97 | \( 1 + 13.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.978225098031570442100680291378, −9.405371030402195328498584238690, −8.444036836148266317462680679572, −7.14285902804149187854687637685, −6.38933160602335450616910029308, −5.54771898491111071843290584927, −4.56350401737221087426400089641, −3.63201883964075623497015072230, −2.60058402241511192245488348667, −0.929145860526413366207726639452,
2.11432535170431634640980757008, 3.25164366940671823449869811904, 3.92877573261394171543406793076, 5.20785551174675476939616160079, 6.26626477464054031086394477672, 6.84868152861629510801082287232, 7.47049250883496927770914448973, 8.765376941351285815712657042725, 9.957951140350925519897057147447, 10.45096341739566612824601300968