L(s) = 1 | + (0.927 + 1.06i)2-s + (−0.280 + 1.98i)4-s − 2i·5-s + 0.936·7-s + (−2.37 + 1.53i)8-s + (2.13 − 1.85i)10-s + (3.09 − 1.19i)11-s + 4.27·13-s + (0.868 + 0.999i)14-s + (−3.84 − 1.11i)16-s + 3.33i·17-s + 2.89i·19-s + (3.96 + 0.561i)20-s + (4.14 + 2.19i)22-s − 5.12i·23-s + ⋯ |
L(s) = 1 | + (0.655 + 0.755i)2-s + (−0.140 + 0.990i)4-s − 0.894i·5-s + 0.353·7-s + (−0.839 + 0.543i)8-s + (0.675 − 0.586i)10-s + (0.932 − 0.361i)11-s + 1.18·13-s + (0.232 + 0.267i)14-s + (−0.960 − 0.277i)16-s + 0.808i·17-s + 0.664i·19-s + (0.885 + 0.125i)20-s + (0.884 + 0.466i)22-s − 1.06i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.586 - 0.809i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.586 - 0.809i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.10731 + 1.07591i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.10731 + 1.07591i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.927 - 1.06i)T \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (-3.09 + 1.19i)T \) |
good | 5 | \( 1 + 2iT - 5T^{2} \) |
| 7 | \( 1 - 0.936T + 7T^{2} \) |
| 13 | \( 1 - 4.27T + 13T^{2} \) |
| 17 | \( 1 - 3.33iT - 17T^{2} \) |
| 19 | \( 1 - 2.89iT - 19T^{2} \) |
| 23 | \( 1 + 5.12iT - 23T^{2} \) |
| 29 | \( 1 - 6.60T + 29T^{2} \) |
| 31 | \( 1 - 1.73iT - 31T^{2} \) |
| 37 | \( 1 - 6.18iT - 37T^{2} \) |
| 41 | \( 1 - 1.46iT - 41T^{2} \) |
| 43 | \( 1 - 10.3iT - 43T^{2} \) |
| 47 | \( 1 + 6iT - 47T^{2} \) |
| 53 | \( 1 + 8.24iT - 53T^{2} \) |
| 59 | \( 1 + 9.65T + 59T^{2} \) |
| 61 | \( 1 - 9.06T + 61T^{2} \) |
| 67 | \( 1 + 10.2T + 67T^{2} \) |
| 71 | \( 1 + 4.24iT - 71T^{2} \) |
| 73 | \( 1 + 13.2iT - 73T^{2} \) |
| 79 | \( 1 + 3.86T + 79T^{2} \) |
| 83 | \( 1 - 2.39iT - 83T^{2} \) |
| 89 | \( 1 + 3.47T + 89T^{2} \) |
| 97 | \( 1 - 11.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.47232733335058882850365011168, −9.173286941820838002829916434846, −8.398089457370647549670765188491, −8.129943845609256195265444121043, −6.55555500175135224417902732559, −6.17390183299983517979849269040, −4.97312100741862327810036889909, −4.24773166382103875182546662892, −3.25807182953994622040438505305, −1.37310066846734640229155367655,
1.27788318315871964800276847796, 2.62687916222941356985628125369, 3.59735045193346706993218474089, 4.51532812623545281199652719350, 5.65551213860679786242790385505, 6.56004756049905768836581429190, 7.29263093655188580613641386331, 8.750860101579290565329673736462, 9.451222439991436409949420899447, 10.42137492151073899423323569560