L(s) = 1 | + (−1.07 + 0.914i)2-s + (1.91 − 1.91i)3-s + (0.326 − 1.97i)4-s + (0.329 − 0.329i)5-s + (−0.313 + 3.81i)6-s + (1.45 + 2.42i)8-s − 4.32i·9-s + (−0.0540 + 0.657i)10-s + (1.41 − 1.41i)11-s + (−3.15 − 4.40i)12-s + (−4.51 − 4.51i)13-s − 1.26i·15-s + (−3.78 − 1.28i)16-s − 5.40i·17-s + (3.95 + 4.66i)18-s + (−1.39 + 1.39i)19-s + ⋯ |
L(s) = 1 | + (−0.762 + 0.646i)2-s + (1.10 − 1.10i)3-s + (0.163 − 0.986i)4-s + (0.147 − 0.147i)5-s + (−0.128 + 1.55i)6-s + (0.513 + 0.858i)8-s − 1.44i·9-s + (−0.0170 + 0.207i)10-s + (0.427 − 0.427i)11-s + (−0.909 − 1.27i)12-s + (−1.25 − 1.25i)13-s − 0.326i·15-s + (−0.946 − 0.322i)16-s − 1.31i·17-s + (0.932 + 1.10i)18-s + (−0.319 + 0.319i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.00706 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 784 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.00706 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.973814 - 0.980722i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.973814 - 0.980722i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.07 - 0.914i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-1.91 + 1.91i)T - 3iT^{2} \) |
| 5 | \( 1 + (-0.329 + 0.329i)T - 5iT^{2} \) |
| 11 | \( 1 + (-1.41 + 1.41i)T - 11iT^{2} \) |
| 13 | \( 1 + (4.51 + 4.51i)T + 13iT^{2} \) |
| 17 | \( 1 + 5.40iT - 17T^{2} \) |
| 19 | \( 1 + (1.39 - 1.39i)T - 19iT^{2} \) |
| 23 | \( 1 + 1.90T + 23T^{2} \) |
| 29 | \( 1 + (1.12 - 1.12i)T - 29iT^{2} \) |
| 31 | \( 1 - 0.868T + 31T^{2} \) |
| 37 | \( 1 + (-5.78 - 5.78i)T + 37iT^{2} \) |
| 41 | \( 1 - 3.24T + 41T^{2} \) |
| 43 | \( 1 + (-6.35 + 6.35i)T - 43iT^{2} \) |
| 47 | \( 1 - 2.98T + 47T^{2} \) |
| 53 | \( 1 + (4.96 + 4.96i)T + 53iT^{2} \) |
| 59 | \( 1 + (6.07 + 6.07i)T + 59iT^{2} \) |
| 61 | \( 1 + (0.343 + 0.343i)T + 61iT^{2} \) |
| 67 | \( 1 + (2.82 + 2.82i)T + 67iT^{2} \) |
| 71 | \( 1 + 12.1T + 71T^{2} \) |
| 73 | \( 1 - 15.5T + 73T^{2} \) |
| 79 | \( 1 - 1.23iT - 79T^{2} \) |
| 83 | \( 1 + (-9.03 + 9.03i)T - 83iT^{2} \) |
| 89 | \( 1 - 2.32T + 89T^{2} \) |
| 97 | \( 1 - 4.69iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.612802859712565451746967400647, −9.152599041520465173289480008355, −8.145605947486268680164306825309, −7.63838362356856625018765328275, −6.99326470563007430510995620880, −5.96282909842426458203489508838, −4.93663193760162556203771329020, −3.10009292499775683979966223377, −2.12129236686692796713711575013, −0.77029022417390977580349467037,
1.99840276227575247685373417736, 2.75890580663259110249360474898, 4.20617131550596213817081333702, 4.31913056618600319671743341529, 6.32665100614882917922061432590, 7.46414693562695748954446532232, 8.234279337839523162818373348598, 9.241399495198070245417923515610, 9.444137260864846441933785751050, 10.30091885993525365738746705719