Properties

Label 784.2.j.a.587.8
Level $784$
Weight $2$
Character 784.587
Analytic conductor $6.260$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,2,Mod(195,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.195"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 587.8
Character \(\chi\) \(=\) 784.587
Dual form 784.2.j.a.195.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.07857 + 0.914706i) q^{2} +(1.91404 - 1.91404i) q^{3} +(0.326624 - 1.97315i) q^{4} +(0.329897 - 0.329897i) q^{5} +(-0.313640 + 3.81521i) q^{6} +(1.45257 + 2.42694i) q^{8} -4.32709i q^{9} +(-0.0540578 + 0.657575i) q^{10} +(1.41679 - 1.41679i) q^{11} +(-3.15151 - 4.40186i) q^{12} +(-4.51607 - 4.51607i) q^{13} -1.26287i q^{15} +(-3.78663 - 1.28896i) q^{16} -5.40476i q^{17} +(3.95802 + 4.66707i) q^{18} +(-1.39438 + 1.39438i) q^{19} +(-0.543183 - 0.758687i) q^{20} +(-0.232159 + 2.82405i) q^{22} -1.90249 q^{23} +(7.42553 + 1.86500i) q^{24} +4.78234i q^{25} +(9.00178 + 0.740017i) q^{26} +(-2.54010 - 2.54010i) q^{27} +(-1.12415 + 1.12415i) q^{29} +(1.15516 + 1.36209i) q^{30} +0.868151 q^{31} +(5.26316 - 2.07343i) q^{32} -5.42358i q^{33} +(4.94377 + 5.82941i) q^{34} +(-8.53799 - 1.41333i) q^{36} +(5.78856 + 5.78856i) q^{37} +(0.228487 - 2.77939i) q^{38} -17.2879 q^{39} +(1.27984 + 0.321444i) q^{40} +3.24226 q^{41} +(6.35727 - 6.35727i) q^{43} +(-2.33278 - 3.25830i) q^{44} +(-1.42749 - 1.42749i) q^{45} +(2.05197 - 1.74022i) q^{46} +2.98532 q^{47} +(-9.71488 + 4.78065i) q^{48} +(-4.37443 - 5.15808i) q^{50} +(-10.3449 - 10.3449i) q^{51} +(-10.3859 + 7.43582i) q^{52} +(-4.96313 - 4.96313i) q^{53} +(5.06313 + 0.416229i) q^{54} -0.934789i q^{55} +5.33780i q^{57} +(0.184206 - 2.24074i) q^{58} +(-6.07138 - 6.07138i) q^{59} +(-2.49183 - 0.412484i) q^{60} +(-0.343846 - 0.343846i) q^{61} +(-0.936361 + 0.794103i) q^{62} +(-3.78011 + 7.05059i) q^{64} -2.97967 q^{65} +(4.96099 + 5.84971i) q^{66} +(-2.82013 - 2.82013i) q^{67} +(-10.6644 - 1.76533i) q^{68} +(-3.64144 + 3.64144i) q^{69} -12.1916 q^{71} +(10.5016 - 6.28538i) q^{72} +15.5822 q^{73} +(-11.5382 - 0.948530i) q^{74} +(9.15358 + 9.15358i) q^{75} +(2.29588 + 3.20676i) q^{76} +(18.6462 - 15.8133i) q^{78} +1.23703i q^{79} +(-1.67442 + 0.823975i) q^{80} +3.25756 q^{81} +(-3.49701 + 2.96572i) q^{82} +(9.03560 - 9.03560i) q^{83} +(-1.78301 - 1.78301i) q^{85} +(-1.04172 + 12.6718i) q^{86} +4.30333i q^{87} +(5.49645 + 1.38049i) q^{88} +2.32727 q^{89} +(2.84539 + 0.233913i) q^{90} +(-0.621399 + 3.75390i) q^{92} +(1.66167 - 1.66167i) q^{93} +(-3.21987 + 2.73069i) q^{94} +0.920003i q^{95} +(6.10528 - 14.0425i) q^{96} +4.69704i q^{97} +(-6.13058 - 6.13058i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{2} + 8 q^{4} + 4 q^{8} - 4 q^{11} - 16 q^{16} + 60 q^{18} - 28 q^{22} + 24 q^{23} - 24 q^{29} + 36 q^{30} + 24 q^{32} + 16 q^{36} - 12 q^{37} + 8 q^{39} - 52 q^{44} - 32 q^{46} + 68 q^{51} - 12 q^{53}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.07857 + 0.914706i −0.762664 + 0.646795i
\(3\) 1.91404 1.91404i 1.10507 1.10507i 0.111282 0.993789i \(-0.464504\pi\)
0.993789 0.111282i \(-0.0354957\pi\)
\(4\) 0.326624 1.97315i 0.163312 0.986574i
\(5\) 0.329897 0.329897i 0.147534 0.147534i −0.629481 0.777016i \(-0.716733\pi\)
0.777016 + 0.629481i \(0.216733\pi\)
\(6\) −0.313640 + 3.81521i −0.128043 + 1.55755i
\(7\) 0 0
\(8\) 1.45257 + 2.42694i 0.513559 + 0.858054i
\(9\) 4.32709i 1.44236i
\(10\) −0.0540578 + 0.657575i −0.0170946 + 0.207943i
\(11\) 1.41679 1.41679i 0.427178 0.427178i −0.460488 0.887666i \(-0.652325\pi\)
0.887666 + 0.460488i \(0.152325\pi\)
\(12\) −3.15151 4.40186i −0.909763 1.27071i
\(13\) −4.51607 4.51607i −1.25253 1.25253i −0.954581 0.297952i \(-0.903696\pi\)
−0.297952 0.954581i \(-0.596304\pi\)
\(14\) 0 0
\(15\) 1.26287i 0.326072i
\(16\) −3.78663 1.28896i −0.946658 0.322239i
\(17\) 5.40476i 1.31085i −0.755262 0.655424i \(-0.772490\pi\)
0.755262 0.655424i \(-0.227510\pi\)
\(18\) 3.95802 + 4.66707i 0.932914 + 1.10004i
\(19\) −1.39438 + 1.39438i −0.319893 + 0.319893i −0.848726 0.528833i \(-0.822630\pi\)
0.528833 + 0.848726i \(0.322630\pi\)
\(20\) −0.543183 0.758687i −0.121459 0.169648i
\(21\) 0 0
\(22\) −0.232159 + 2.82405i −0.0494966 + 0.602090i
\(23\) −1.90249 −0.396697 −0.198348 0.980132i \(-0.563558\pi\)
−0.198348 + 0.980132i \(0.563558\pi\)
\(24\) 7.42553 + 1.86500i 1.51573 + 0.380691i
\(25\) 4.78234i 0.956467i
\(26\) 9.00178 + 0.740017i 1.76539 + 0.145129i
\(27\) −2.54010 2.54010i −0.488843 0.488843i
\(28\) 0 0
\(29\) −1.12415 + 1.12415i −0.208749 + 0.208749i −0.803736 0.594986i \(-0.797157\pi\)
0.594986 + 0.803736i \(0.297157\pi\)
\(30\) 1.15516 + 1.36209i 0.210902 + 0.248683i
\(31\) 0.868151 0.155924 0.0779622 0.996956i \(-0.475159\pi\)
0.0779622 + 0.996956i \(0.475159\pi\)
\(32\) 5.26316 2.07343i 0.930405 0.366534i
\(33\) 5.42358i 0.944125i
\(34\) 4.94377 + 5.82941i 0.847849 + 0.999736i
\(35\) 0 0
\(36\) −8.53799 1.41333i −1.42300 0.235555i
\(37\) 5.78856 + 5.78856i 0.951633 + 0.951633i 0.998883 0.0472499i \(-0.0150457\pi\)
−0.0472499 + 0.998883i \(0.515046\pi\)
\(38\) 0.228487 2.77939i 0.0370656 0.450876i
\(39\) −17.2879 −2.76828
\(40\) 1.27984 + 0.321444i 0.202360 + 0.0508248i
\(41\) 3.24226 0.506356 0.253178 0.967420i \(-0.418524\pi\)
0.253178 + 0.967420i \(0.418524\pi\)
\(42\) 0 0
\(43\) 6.35727 6.35727i 0.969475 0.969475i −0.0300731 0.999548i \(-0.509574\pi\)
0.999548 + 0.0300731i \(0.00957401\pi\)
\(44\) −2.33278 3.25830i −0.351680 0.491207i
\(45\) −1.42749 1.42749i −0.212798 0.212798i
\(46\) 2.05197 1.74022i 0.302546 0.256582i
\(47\) 2.98532 0.435454 0.217727 0.976010i \(-0.430136\pi\)
0.217727 + 0.976010i \(0.430136\pi\)
\(48\) −9.71488 + 4.78065i −1.40222 + 0.690028i
\(49\) 0 0
\(50\) −4.37443 5.15808i −0.618638 0.729463i
\(51\) −10.3449 10.3449i −1.44858 1.44858i
\(52\) −10.3859 + 7.43582i −1.44027 + 1.03116i
\(53\) −4.96313 4.96313i −0.681738 0.681738i 0.278654 0.960392i \(-0.410112\pi\)
−0.960392 + 0.278654i \(0.910112\pi\)
\(54\) 5.06313 + 0.416229i 0.689004 + 0.0566416i
\(55\) 0.934789i 0.126047i
\(56\) 0 0
\(57\) 5.33780i 0.707009i
\(58\) 0.184206 2.24074i 0.0241875 0.294224i
\(59\) −6.07138 6.07138i −0.790427 0.790427i 0.191137 0.981563i \(-0.438783\pi\)
−0.981563 + 0.191137i \(0.938783\pi\)
\(60\) −2.49183 0.412484i −0.321694 0.0532514i
\(61\) −0.343846 0.343846i −0.0440250 0.0440250i 0.684752 0.728777i \(-0.259911\pi\)
−0.728777 + 0.684752i \(0.759911\pi\)
\(62\) −0.936361 + 0.794103i −0.118918 + 0.100851i
\(63\) 0 0
\(64\) −3.78011 + 7.05059i −0.472513 + 0.881323i
\(65\) −2.97967 −0.369583
\(66\) 4.96099 + 5.84971i 0.610655 + 0.720050i
\(67\) −2.82013 2.82013i −0.344534 0.344534i 0.513535 0.858069i \(-0.328336\pi\)
−0.858069 + 0.513535i \(0.828336\pi\)
\(68\) −10.6644 1.76533i −1.29325 0.214077i
\(69\) −3.64144 + 3.64144i −0.438378 + 0.438378i
\(70\) 0 0
\(71\) −12.1916 −1.44687 −0.723437 0.690390i \(-0.757439\pi\)
−0.723437 + 0.690390i \(0.757439\pi\)
\(72\) 10.5016 6.28538i 1.23763 0.740739i
\(73\) 15.5822 1.82376 0.911878 0.410460i \(-0.134632\pi\)
0.911878 + 0.410460i \(0.134632\pi\)
\(74\) −11.5382 0.948530i −1.34129 0.110264i
\(75\) 9.15358 + 9.15358i 1.05696 + 1.05696i
\(76\) 2.29588 + 3.20676i 0.263356 + 0.367841i
\(77\) 0 0
\(78\) 18.6462 15.8133i 2.11126 1.79051i
\(79\) 1.23703i 0.139177i 0.997576 + 0.0695885i \(0.0221686\pi\)
−0.997576 + 0.0695885i \(0.977831\pi\)
\(80\) −1.67442 + 0.823975i −0.187206 + 0.0921232i
\(81\) 3.25756 0.361951
\(82\) −3.49701 + 2.96572i −0.386180 + 0.327509i
\(83\) 9.03560 9.03560i 0.991786 0.991786i −0.00818066 0.999967i \(-0.502604\pi\)
0.999967 + 0.00818066i \(0.00260402\pi\)
\(84\) 0 0
\(85\) −1.78301 1.78301i −0.193395 0.193395i
\(86\) −1.04172 + 12.6718i −0.112332 + 1.36643i
\(87\) 4.30333i 0.461366i
\(88\) 5.49645 + 1.38049i 0.585924 + 0.147161i
\(89\) 2.32727 0.246691 0.123345 0.992364i \(-0.460638\pi\)
0.123345 + 0.992364i \(0.460638\pi\)
\(90\) 2.84539 + 0.233913i 0.299930 + 0.0246566i
\(91\) 0 0
\(92\) −0.621399 + 3.75390i −0.0647854 + 0.391371i
\(93\) 1.66167 1.66167i 0.172308 0.172308i
\(94\) −3.21987 + 2.73069i −0.332105 + 0.281649i
\(95\) 0.920003i 0.0943904i
\(96\) 6.10528 14.0425i 0.623117 1.43321i
\(97\) 4.69704i 0.476912i 0.971153 + 0.238456i \(0.0766414\pi\)
−0.971153 + 0.238456i \(0.923359\pi\)
\(98\) 0 0
\(99\) −6.13058 6.13058i −0.616146 0.616146i
\(100\) 9.43626 + 1.56203i 0.943626 + 0.156203i
\(101\) −3.92074 + 3.92074i −0.390129 + 0.390129i −0.874733 0.484605i \(-0.838963\pi\)
0.484605 + 0.874733i \(0.338963\pi\)
\(102\) 20.6203 + 1.69515i 2.04171 + 0.167845i
\(103\) 1.10634i 0.109011i 0.998513 + 0.0545053i \(0.0173582\pi\)
−0.998513 + 0.0545053i \(0.982642\pi\)
\(104\) 4.40036 17.5201i 0.431491 1.71799i
\(105\) 0 0
\(106\) 9.89289 + 0.813273i 0.960882 + 0.0789921i
\(107\) −4.37182 + 4.37182i −0.422640 + 0.422640i −0.886112 0.463472i \(-0.846603\pi\)
0.463472 + 0.886112i \(0.346603\pi\)
\(108\) −5.84166 + 4.18234i −0.562114 + 0.402446i
\(109\) 7.70382 7.70382i 0.737892 0.737892i −0.234278 0.972170i \(-0.575273\pi\)
0.972170 + 0.234278i \(0.0752725\pi\)
\(110\) 0.855057 + 1.00823i 0.0815265 + 0.0961314i
\(111\) 22.1591 2.10324
\(112\) 0 0
\(113\) −2.81872 −0.265163 −0.132582 0.991172i \(-0.542327\pi\)
−0.132582 + 0.991172i \(0.542327\pi\)
\(114\) −4.88252 5.75719i −0.457290 0.539210i
\(115\) −0.627625 + 0.627625i −0.0585264 + 0.0585264i
\(116\) 1.85094 + 2.58529i 0.171855 + 0.240038i
\(117\) −19.5414 + 19.5414i −1.80661 + 1.80661i
\(118\) 12.1019 + 0.994875i 1.11407 + 0.0915857i
\(119\) 0 0
\(120\) 3.06491 1.83440i 0.279787 0.167457i
\(121\) 6.98541i 0.635037i
\(122\) 0.685380 + 0.0563437i 0.0620514 + 0.00510112i
\(123\) 6.20582 6.20582i 0.559560 0.559560i
\(124\) 0.283559 1.71299i 0.0254643 0.153831i
\(125\) 3.22716 + 3.22716i 0.288646 + 0.288646i
\(126\) 0 0
\(127\) 9.34725i 0.829434i 0.909950 + 0.414717i \(0.136119\pi\)
−0.909950 + 0.414717i \(0.863881\pi\)
\(128\) −2.37211 11.0622i −0.209667 0.977773i
\(129\) 24.3361i 2.14268i
\(130\) 3.21378 2.72553i 0.281868 0.239045i
\(131\) 13.1186 13.1186i 1.14618 1.14618i 0.158879 0.987298i \(-0.449212\pi\)
0.987298 0.158879i \(-0.0507879\pi\)
\(132\) −10.7015 1.77147i −0.931449 0.154187i
\(133\) 0 0
\(134\) 5.62131 + 0.462116i 0.485607 + 0.0399207i
\(135\) −1.67594 −0.144242
\(136\) 13.1170 7.85077i 1.12478 0.673198i
\(137\) 15.1891i 1.29769i 0.760921 + 0.648844i \(0.224747\pi\)
−0.760921 + 0.648844i \(0.775253\pi\)
\(138\) 0.596697 7.25840i 0.0507943 0.617876i
\(139\) 1.13113 + 1.13113i 0.0959413 + 0.0959413i 0.753448 0.657507i \(-0.228389\pi\)
−0.657507 + 0.753448i \(0.728389\pi\)
\(140\) 0 0
\(141\) 5.71402 5.71402i 0.481207 0.481207i
\(142\) 13.1495 11.1517i 1.10348 0.935831i
\(143\) −12.7967 −1.07011
\(144\) −5.57743 + 16.3851i −0.464786 + 1.36543i
\(145\) 0.741706i 0.0615954i
\(146\) −16.8065 + 14.2531i −1.39091 + 1.17960i
\(147\) 0 0
\(148\) 13.3124 9.53101i 1.09427 0.783444i
\(149\) 7.18420 + 7.18420i 0.588553 + 0.588553i 0.937239 0.348687i \(-0.113372\pi\)
−0.348687 + 0.937239i \(0.613372\pi\)
\(150\) −18.2456 1.49993i −1.48975 0.122469i
\(151\) 11.6780 0.950342 0.475171 0.879894i \(-0.342386\pi\)
0.475171 + 0.879894i \(0.342386\pi\)
\(152\) −5.40951 1.35865i −0.438770 0.110201i
\(153\) −23.3869 −1.89072
\(154\) 0 0
\(155\) 0.286400 0.286400i 0.0230042 0.0230042i
\(156\) −5.64664 + 34.1115i −0.452093 + 2.73111i
\(157\) 1.57484 + 1.57484i 0.125686 + 0.125686i 0.767152 0.641466i \(-0.221673\pi\)
−0.641466 + 0.767152i \(0.721673\pi\)
\(158\) −1.13152 1.33423i −0.0900190 0.106145i
\(159\) −18.9992 −1.50674
\(160\) 1.05228 2.42032i 0.0831902 0.191343i
\(161\) 0 0
\(162\) −3.51350 + 2.97971i −0.276047 + 0.234108i
\(163\) 10.3761 + 10.3761i 0.812720 + 0.812720i 0.985041 0.172321i \(-0.0551266\pi\)
−0.172321 + 0.985041i \(0.555127\pi\)
\(164\) 1.05900 6.39747i 0.0826941 0.499558i
\(165\) −1.78922 1.78922i −0.139291 0.139291i
\(166\) −1.48060 + 18.0104i −0.114917 + 1.39788i
\(167\) 5.94995i 0.460421i −0.973141 0.230210i \(-0.926059\pi\)
0.973141 0.230210i \(-0.0739415\pi\)
\(168\) 0 0
\(169\) 27.7898i 2.13768i
\(170\) 3.55404 + 0.292170i 0.272582 + 0.0224084i
\(171\) 6.03361 + 6.03361i 0.461402 + 0.461402i
\(172\) −10.4674 14.6203i −0.798132 1.11479i
\(173\) 6.49471 + 6.49471i 0.493784 + 0.493784i 0.909496 0.415713i \(-0.136468\pi\)
−0.415713 + 0.909496i \(0.636468\pi\)
\(174\) −3.93629 4.64144i −0.298409 0.351867i
\(175\) 0 0
\(176\) −7.19105 + 3.53868i −0.542045 + 0.266738i
\(177\) −23.2417 −1.74696
\(178\) −2.51013 + 2.12877i −0.188142 + 0.159558i
\(179\) −2.69029 2.69029i −0.201082 0.201082i 0.599382 0.800463i \(-0.295413\pi\)
−0.800463 + 0.599382i \(0.795413\pi\)
\(180\) −3.28291 + 2.35040i −0.244694 + 0.175189i
\(181\) 5.13439 5.13439i 0.381636 0.381636i −0.490055 0.871691i \(-0.663023\pi\)
0.871691 + 0.490055i \(0.163023\pi\)
\(182\) 0 0
\(183\) −1.31627 −0.0973015
\(184\) −2.76349 4.61724i −0.203727 0.340387i
\(185\) 3.81925 0.280797
\(186\) −0.272287 + 3.31217i −0.0199650 + 0.242860i
\(187\) −7.65741 7.65741i −0.559965 0.559965i
\(188\) 0.975077 5.89048i 0.0711148 0.429607i
\(189\) 0 0
\(190\) −0.841533 0.992287i −0.0610512 0.0719881i
\(191\) 17.5976i 1.27332i 0.771145 + 0.636660i \(0.219685\pi\)
−0.771145 + 0.636660i \(0.780315\pi\)
\(192\) 6.25983 + 20.7304i 0.451764 + 1.49609i
\(193\) −6.57937 −0.473593 −0.236797 0.971559i \(-0.576097\pi\)
−0.236797 + 0.971559i \(0.576097\pi\)
\(194\) −4.29642 5.06609i −0.308465 0.363724i
\(195\) −5.70321 + 5.70321i −0.408415 + 0.408415i
\(196\) 0 0
\(197\) 14.8776 + 14.8776i 1.05998 + 1.05998i 0.998082 + 0.0619015i \(0.0197165\pi\)
0.0619015 + 0.998082i \(0.480284\pi\)
\(198\) 12.2199 + 1.00457i 0.868433 + 0.0713920i
\(199\) 7.42845i 0.526589i 0.964716 + 0.263294i \(0.0848090\pi\)
−0.964716 + 0.263294i \(0.915191\pi\)
\(200\) −11.6065 + 6.94666i −0.820701 + 0.491203i
\(201\) −10.7957 −0.761470
\(202\) 0.642465 7.81512i 0.0452037 0.549870i
\(203\) 0 0
\(204\) −23.7910 + 17.0332i −1.66570 + 1.19256i
\(205\) 1.06961 1.06961i 0.0747049 0.0747049i
\(206\) −1.01197 1.19326i −0.0705075 0.0831384i
\(207\) 8.23225i 0.572181i
\(208\) 11.2797 + 22.9217i 0.782106 + 1.58934i
\(209\) 3.95109i 0.273303i
\(210\) 0 0
\(211\) −9.11727 9.11727i −0.627659 0.627659i 0.319820 0.947478i \(-0.396378\pi\)
−0.947478 + 0.319820i \(0.896378\pi\)
\(212\) −11.4141 + 8.17192i −0.783922 + 0.561249i
\(213\) −23.3352 + 23.3352i −1.59890 + 1.59890i
\(214\) 0.716379 8.71424i 0.0489707 0.595693i
\(215\) 4.19448i 0.286061i
\(216\) 2.47502 9.85435i 0.168404 0.670504i
\(217\) 0 0
\(218\) −1.26237 + 15.3558i −0.0854985 + 1.04003i
\(219\) 29.8249 29.8249i 2.01538 2.01538i
\(220\) −1.84448 0.305325i −0.124355 0.0205850i
\(221\) −24.4083 + 24.4083i −1.64188 + 1.64188i
\(222\) −23.9001 + 20.2690i −1.60407 + 1.36037i
\(223\) −6.72926 −0.450624 −0.225312 0.974287i \(-0.572340\pi\)
−0.225312 + 0.974287i \(0.572340\pi\)
\(224\) 0 0
\(225\) 20.6936 1.37957
\(226\) 3.04019 2.57830i 0.202230 0.171506i
\(227\) 5.46476 5.46476i 0.362709 0.362709i −0.502101 0.864809i \(-0.667439\pi\)
0.864809 + 0.502101i \(0.167439\pi\)
\(228\) 10.5323 + 1.74345i 0.697517 + 0.115463i
\(229\) −10.7782 + 10.7782i −0.712242 + 0.712242i −0.967004 0.254762i \(-0.918003\pi\)
0.254762 + 0.967004i \(0.418003\pi\)
\(230\) 0.102845 1.25103i 0.00678137 0.0824905i
\(231\) 0 0
\(232\) −4.36115 1.09535i −0.286323 0.0719130i
\(233\) 14.7748i 0.967931i −0.875087 0.483965i \(-0.839196\pi\)
0.875087 0.483965i \(-0.160804\pi\)
\(234\) 3.20212 38.9515i 0.209329 2.54634i
\(235\) 0.984847 0.984847i 0.0642443 0.0642443i
\(236\) −13.9628 + 9.99668i −0.908901 + 0.650729i
\(237\) 2.36773 + 2.36773i 0.153800 + 0.153800i
\(238\) 0 0
\(239\) 28.5488i 1.84667i −0.383998 0.923334i \(-0.625453\pi\)
0.383998 0.923334i \(-0.374547\pi\)
\(240\) −1.62778 + 4.78203i −0.105073 + 0.308678i
\(241\) 22.9545i 1.47863i 0.673361 + 0.739314i \(0.264850\pi\)
−0.673361 + 0.739314i \(0.735150\pi\)
\(242\) −6.38960 7.53425i −0.410739 0.484320i
\(243\) 13.8554 13.8554i 0.888825 0.888825i
\(244\) −0.790768 + 0.566151i −0.0506238 + 0.0362441i
\(245\) 0 0
\(246\) −1.01690 + 12.3699i −0.0648354 + 0.788677i
\(247\) 12.5943 0.801353
\(248\) 1.26105 + 2.10695i 0.0800765 + 0.133792i
\(249\) 34.5890i 2.19199i
\(250\) −6.43262 0.528812i −0.406835 0.0334450i
\(251\) −10.2808 10.2808i −0.648918 0.648918i 0.303813 0.952732i \(-0.401740\pi\)
−0.952732 + 0.303813i \(0.901740\pi\)
\(252\) 0 0
\(253\) −2.69543 + 2.69543i −0.169460 + 0.169460i
\(254\) −8.54999 10.0817i −0.536474 0.632580i
\(255\) −6.82551 −0.427430
\(256\) 12.6772 + 9.76161i 0.792324 + 0.610100i
\(257\) 2.51508i 0.156886i −0.996919 0.0784431i \(-0.975005\pi\)
0.996919 0.0784431i \(-0.0249949\pi\)
\(258\) 22.2604 + 26.2482i 1.38587 + 1.63414i
\(259\) 0 0
\(260\) −0.973233 + 5.87934i −0.0603574 + 0.364621i
\(261\) 4.86430 + 4.86430i 0.301092 + 0.301092i
\(262\) −2.14965 + 26.1490i −0.132806 + 1.61549i
\(263\) 9.09561 0.560859 0.280430 0.959875i \(-0.409523\pi\)
0.280430 + 0.959875i \(0.409523\pi\)
\(264\) 13.1627 7.87811i 0.810110 0.484864i
\(265\) −3.27464 −0.201159
\(266\) 0 0
\(267\) 4.45449 4.45449i 0.272611 0.272611i
\(268\) −6.48567 + 4.64342i −0.396175 + 0.283642i
\(269\) 4.03108 + 4.03108i 0.245780 + 0.245780i 0.819236 0.573456i \(-0.194398\pi\)
−0.573456 + 0.819236i \(0.694398\pi\)
\(270\) 1.80762 1.53300i 0.110008 0.0932951i
\(271\) 11.5201 0.699798 0.349899 0.936787i \(-0.386216\pi\)
0.349899 + 0.936787i \(0.386216\pi\)
\(272\) −6.96650 + 20.4658i −0.422406 + 1.24092i
\(273\) 0 0
\(274\) −13.8935 16.3824i −0.839338 0.989700i
\(275\) 6.77557 + 6.77557i 0.408582 + 0.408582i
\(276\) 5.99572 + 8.37449i 0.360900 + 0.504085i
\(277\) 14.7749 + 14.7749i 0.887740 + 0.887740i 0.994306 0.106566i \(-0.0339855\pi\)
−0.106566 + 0.994306i \(0.533985\pi\)
\(278\) −2.25466 0.185350i −0.135225 0.0111166i
\(279\) 3.75657i 0.224900i
\(280\) 0 0
\(281\) 19.8360i 1.18331i −0.806190 0.591657i \(-0.798474\pi\)
0.806190 0.591657i \(-0.201526\pi\)
\(282\) −0.936316 + 11.3896i −0.0557568 + 0.678242i
\(283\) 14.3870 + 14.3870i 0.855221 + 0.855221i 0.990771 0.135550i \(-0.0432801\pi\)
−0.135550 + 0.990771i \(0.543280\pi\)
\(284\) −3.98206 + 24.0558i −0.236292 + 1.42745i
\(285\) 1.76092 + 1.76092i 0.104308 + 0.104308i
\(286\) 13.8021 11.7052i 0.816134 0.692142i
\(287\) 0 0
\(288\) −8.97192 22.7742i −0.528675 1.34198i
\(289\) −12.2114 −0.718320
\(290\) −0.678444 0.799982i −0.0398396 0.0469765i
\(291\) 8.99032 + 8.99032i 0.527022 + 0.527022i
\(292\) 5.08952 30.7460i 0.297841 1.79927i
\(293\) −6.75509 + 6.75509i −0.394636 + 0.394636i −0.876336 0.481700i \(-0.840020\pi\)
0.481700 + 0.876336i \(0.340020\pi\)
\(294\) 0 0
\(295\) −4.00586 −0.233230
\(296\) −5.64024 + 22.4568i −0.327833 + 1.30527i
\(297\) −7.19759 −0.417646
\(298\) −14.3201 1.17722i −0.829541 0.0681948i
\(299\) 8.59178 + 8.59178i 0.496876 + 0.496876i
\(300\) 21.0512 15.0716i 1.21539 0.870159i
\(301\) 0 0
\(302\) −12.5955 + 10.6819i −0.724791 + 0.614676i
\(303\) 15.0089i 0.862239i
\(304\) 7.07731 3.48271i 0.405911 0.199747i
\(305\) −0.226867 −0.0129904
\(306\) 25.2244 21.3921i 1.44198 1.22291i
\(307\) 2.36930 2.36930i 0.135223 0.135223i −0.636255 0.771479i \(-0.719517\pi\)
0.771479 + 0.636255i \(0.219517\pi\)
\(308\) 0 0
\(309\) 2.11757 + 2.11757i 0.120464 + 0.120464i
\(310\) −0.0469303 + 0.570874i −0.00266546 + 0.0324235i
\(311\) 15.1541i 0.859312i −0.902993 0.429656i \(-0.858635\pi\)
0.902993 0.429656i \(-0.141365\pi\)
\(312\) −25.1118 41.9567i −1.42167 2.37533i
\(313\) 6.65582 0.376209 0.188105 0.982149i \(-0.439766\pi\)
0.188105 + 0.982149i \(0.439766\pi\)
\(314\) −3.13909 0.258058i −0.177149 0.0145630i
\(315\) 0 0
\(316\) 2.44085 + 0.404045i 0.137308 + 0.0227293i
\(317\) 18.7482 18.7482i 1.05301 1.05301i 0.0544922 0.998514i \(-0.482646\pi\)
0.998514 0.0544922i \(-0.0173540\pi\)
\(318\) 20.4920 17.3787i 1.14913 0.974551i
\(319\) 3.18537i 0.178346i
\(320\) 1.07892 + 3.57301i 0.0603135 + 0.199737i
\(321\) 16.7357i 0.934094i
\(322\) 0 0
\(323\) 7.53630 + 7.53630i 0.419331 + 0.419331i
\(324\) 1.06400 6.42765i 0.0591110 0.357092i
\(325\) 21.5974 21.5974i 1.19801 1.19801i
\(326\) −20.6825 1.70026i −1.14550 0.0941687i
\(327\) 29.4908i 1.63085i
\(328\) 4.70960 + 7.86879i 0.260044 + 0.434481i
\(329\) 0 0
\(330\) 3.56641 + 0.293187i 0.196325 + 0.0161394i
\(331\) 6.70801 6.70801i 0.368705 0.368705i −0.498300 0.867005i \(-0.666042\pi\)
0.867005 + 0.498300i \(0.166042\pi\)
\(332\) −14.8773 20.7798i −0.816500 1.14044i
\(333\) 25.0476 25.0476i 1.37260 1.37260i
\(334\) 5.44246 + 6.41743i 0.297798 + 0.351146i
\(335\) −1.86071 −0.101661
\(336\) 0 0
\(337\) −16.0354 −0.873502 −0.436751 0.899582i \(-0.643871\pi\)
−0.436751 + 0.899582i \(0.643871\pi\)
\(338\) −25.4195 29.9732i −1.38264 1.63033i
\(339\) −5.39515 + 5.39515i −0.293024 + 0.293024i
\(340\) −4.10052 + 2.93577i −0.222382 + 0.159215i
\(341\) 1.22999 1.22999i 0.0666075 0.0666075i
\(342\) −12.0267 0.988686i −0.650327 0.0534620i
\(343\) 0 0
\(344\) 24.6631 + 6.19438i 1.32974 + 0.333979i
\(345\) 2.40260i 0.129352i
\(346\) −12.9457 1.06424i −0.695968 0.0572140i
\(347\) 2.24473 2.24473i 0.120504 0.120504i −0.644283 0.764787i \(-0.722844\pi\)
0.764787 + 0.644283i \(0.222844\pi\)
\(348\) 8.49112 + 1.40557i 0.455172 + 0.0753466i
\(349\) −2.21348 2.21348i −0.118485 0.118485i 0.645378 0.763863i \(-0.276700\pi\)
−0.763863 + 0.645378i \(0.776700\pi\)
\(350\) 0 0
\(351\) 22.9426i 1.22458i
\(352\) 4.51918 10.3944i 0.240873 0.554024i
\(353\) 8.21881i 0.437443i −0.975787 0.218722i \(-0.929811\pi\)
0.975787 0.218722i \(-0.0701887\pi\)
\(354\) 25.0678 21.2594i 1.33234 1.12992i
\(355\) −4.02196 + 4.02196i −0.213464 + 0.213464i
\(356\) 0.760144 4.59206i 0.0402875 0.243379i
\(357\) 0 0
\(358\) 5.36250 + 0.440840i 0.283417 + 0.0232991i
\(359\) −30.6637 −1.61837 −0.809184 0.587555i \(-0.800091\pi\)
−0.809184 + 0.587555i \(0.800091\pi\)
\(360\) 1.39092 5.53797i 0.0733078 0.291877i
\(361\) 15.1114i 0.795337i
\(362\) −0.841336 + 10.2342i −0.0442196 + 0.537900i
\(363\) 13.3703 + 13.3703i 0.701761 + 0.701761i
\(364\) 0 0
\(365\) 5.14051 5.14051i 0.269067 0.269067i
\(366\) 1.41969 1.20400i 0.0742083 0.0629341i
\(367\) −17.8234 −0.930372 −0.465186 0.885213i \(-0.654013\pi\)
−0.465186 + 0.885213i \(0.654013\pi\)
\(368\) 7.20404 + 2.45223i 0.375536 + 0.127831i
\(369\) 14.0296i 0.730350i
\(370\) −4.11933 + 3.49349i −0.214154 + 0.181618i
\(371\) 0 0
\(372\) −2.73599 3.82147i −0.141854 0.198134i
\(373\) −1.75647 1.75647i −0.0909468 0.0909468i 0.660170 0.751116i \(-0.270484\pi\)
−0.751116 + 0.660170i \(0.770484\pi\)
\(374\) 15.2633 + 1.25477i 0.789248 + 0.0648824i
\(375\) 12.3538 0.637948
\(376\) 4.33637 + 7.24520i 0.223631 + 0.373643i
\(377\) 10.1535 0.522931
\(378\) 0 0
\(379\) −0.526070 + 0.526070i −0.0270224 + 0.0270224i −0.720489 0.693466i \(-0.756083\pi\)
0.693466 + 0.720489i \(0.256083\pi\)
\(380\) 1.81530 + 0.300495i 0.0931231 + 0.0154151i
\(381\) 17.8910 + 17.8910i 0.916584 + 0.916584i
\(382\) −16.0967 18.9803i −0.823577 0.971115i
\(383\) −23.7855 −1.21538 −0.607692 0.794173i \(-0.707904\pi\)
−0.607692 + 0.794173i \(0.707904\pi\)
\(384\) −25.7139 16.6332i −1.31221 0.848812i
\(385\) 0 0
\(386\) 7.09630 6.01819i 0.361192 0.306318i
\(387\) −27.5085 27.5085i −1.39833 1.39833i
\(388\) 9.26797 + 1.53417i 0.470510 + 0.0778856i
\(389\) 17.1439 + 17.1439i 0.869229 + 0.869229i 0.992387 0.123158i \(-0.0393023\pi\)
−0.123158 + 0.992387i \(0.539302\pi\)
\(390\) 0.934545 11.3681i 0.0473225 0.575645i
\(391\) 10.2825i 0.520009i
\(392\) 0 0
\(393\) 50.2190i 2.53321i
\(394\) −29.6551 2.43788i −1.49400 0.122819i
\(395\) 0.408093 + 0.408093i 0.0205334 + 0.0205334i
\(396\) −14.0989 + 10.0942i −0.708498 + 0.507250i
\(397\) −2.98427 2.98427i −0.149776 0.149776i 0.628242 0.778018i \(-0.283775\pi\)
−0.778018 + 0.628242i \(0.783775\pi\)
\(398\) −6.79485 8.01209i −0.340595 0.401610i
\(399\) 0 0
\(400\) 6.16422 18.1090i 0.308211 0.905448i
\(401\) 18.0233 0.900039 0.450019 0.893019i \(-0.351417\pi\)
0.450019 + 0.893019i \(0.351417\pi\)
\(402\) 11.6439 9.87489i 0.580745 0.492515i
\(403\) −3.92063 3.92063i −0.195300 0.195300i
\(404\) 6.45560 + 9.01682i 0.321178 + 0.448604i
\(405\) 1.07466 1.07466i 0.0534002 0.0534002i
\(406\) 0 0
\(407\) 16.4023 0.813034
\(408\) 10.0799 40.1332i 0.499028 1.98689i
\(409\) −27.9686 −1.38296 −0.691478 0.722397i \(-0.743040\pi\)
−0.691478 + 0.722397i \(0.743040\pi\)
\(410\) −0.175270 + 2.13203i −0.00865596 + 0.105294i
\(411\) 29.0724 + 29.0724i 1.43404 + 1.43404i
\(412\) 2.18297 + 0.361356i 0.107547 + 0.0178027i
\(413\) 0 0
\(414\) −7.53009 8.87905i −0.370084 0.436382i
\(415\) 5.96163i 0.292645i
\(416\) −33.1326 14.4051i −1.62446 0.706266i
\(417\) 4.33006 0.212044
\(418\) −3.61409 4.26153i −0.176771 0.208438i
\(419\) −10.4669 + 10.4669i −0.511342 + 0.511342i −0.914937 0.403596i \(-0.867760\pi\)
0.403596 + 0.914937i \(0.367760\pi\)
\(420\) 0 0
\(421\) 12.3722 + 12.3722i 0.602984 + 0.602984i 0.941103 0.338119i \(-0.109791\pi\)
−0.338119 + 0.941103i \(0.609791\pi\)
\(422\) 18.1732 + 1.49398i 0.884659 + 0.0727260i
\(423\) 12.9177i 0.628082i
\(424\) 4.83596 19.2545i 0.234855 0.935081i
\(425\) 25.8474 1.25378
\(426\) 3.82377 46.5134i 0.185262 2.25358i
\(427\) 0 0
\(428\) 7.19831 + 10.0542i 0.347943 + 0.485988i
\(429\) −24.4933 + 24.4933i −1.18255 + 1.18255i
\(430\) 3.83672 + 4.52404i 0.185023 + 0.218169i
\(431\) 13.6357i 0.656809i −0.944537 0.328405i \(-0.893489\pi\)
0.944537 0.328405i \(-0.106511\pi\)
\(432\) 6.34436 + 12.8925i 0.305243 + 0.620292i
\(433\) 19.1575i 0.920649i 0.887751 + 0.460325i \(0.152267\pi\)
−0.887751 + 0.460325i \(0.847733\pi\)
\(434\) 0 0
\(435\) 1.41965 + 1.41965i 0.0680672 + 0.0680672i
\(436\) −12.6845 17.7170i −0.607479 0.848492i
\(437\) 2.65280 2.65280i 0.126901 0.126901i
\(438\) −4.88720 + 59.4493i −0.233519 + 2.84060i
\(439\) 8.57235i 0.409136i −0.978852 0.204568i \(-0.934421\pi\)
0.978852 0.204568i \(-0.0655789\pi\)
\(440\) 2.26868 1.35784i 0.108155 0.0647326i
\(441\) 0 0
\(442\) 3.99961 48.6524i 0.190242 2.31416i
\(443\) −14.8101 + 14.8101i −0.703650 + 0.703650i −0.965192 0.261542i \(-0.915769\pi\)
0.261542 + 0.965192i \(0.415769\pi\)
\(444\) 7.23768 43.7231i 0.343485 2.07501i
\(445\) 0.767760 0.767760i 0.0363953 0.0363953i
\(446\) 7.25797 6.15530i 0.343675 0.291462i
\(447\) 27.5017 1.30079
\(448\) 0 0
\(449\) −24.4270 −1.15278 −0.576391 0.817174i \(-0.695539\pi\)
−0.576391 + 0.817174i \(0.695539\pi\)
\(450\) −22.3195 + 18.9286i −1.05215 + 0.892301i
\(451\) 4.59361 4.59361i 0.216305 0.216305i
\(452\) −0.920663 + 5.56176i −0.0433044 + 0.261603i
\(453\) 22.3521 22.3521i 1.05019 1.05019i
\(454\) −0.895471 + 10.8928i −0.0420265 + 0.511223i
\(455\) 0 0
\(456\) −12.9545 + 7.75350i −0.606652 + 0.363091i
\(457\) 3.61171i 0.168949i −0.996426 0.0844743i \(-0.973079\pi\)
0.996426 0.0844743i \(-0.0269211\pi\)
\(458\) 1.76614 21.4839i 0.0825265 1.00388i
\(459\) −13.7286 + 13.7286i −0.640798 + 0.640798i
\(460\) 1.03340 + 1.44340i 0.0481826 + 0.0672987i
\(461\) −25.2872 25.2872i −1.17774 1.17774i −0.980318 0.197423i \(-0.936743\pi\)
−0.197423 0.980318i \(-0.563257\pi\)
\(462\) 0 0
\(463\) 8.01165i 0.372333i 0.982518 + 0.186166i \(0.0596064\pi\)
−0.982518 + 0.186166i \(0.940394\pi\)
\(464\) 5.70572 2.80776i 0.264881 0.130347i
\(465\) 1.09636i 0.0508425i
\(466\) 13.5146 + 15.9357i 0.626053 + 0.738206i
\(467\) −13.1038 + 13.1038i −0.606373 + 0.606373i −0.941996 0.335623i \(-0.891053\pi\)
0.335623 + 0.941996i \(0.391053\pi\)
\(468\) 32.1755 + 44.9409i 1.48731 + 2.07739i
\(469\) 0 0
\(470\) −0.161380 + 1.96307i −0.00744390 + 0.0905498i
\(471\) 6.02861 0.277784
\(472\) 5.91582 23.5540i 0.272298 1.08416i
\(473\) 18.0138i 0.828277i
\(474\) −4.71954 0.387983i −0.216775 0.0178206i
\(475\) −6.66840 6.66840i −0.305967 0.305967i
\(476\) 0 0
\(477\) −21.4759 + 21.4759i −0.983314 + 0.983314i
\(478\) 26.1138 + 30.7918i 1.19442 + 1.40839i
\(479\) −27.3765 −1.25086 −0.625432 0.780279i \(-0.715077\pi\)
−0.625432 + 0.780279i \(0.715077\pi\)
\(480\) −2.61847 6.64669i −0.119516 0.303379i
\(481\) 52.2831i 2.38390i
\(482\) −20.9966 24.7580i −0.956369 1.12770i
\(483\) 0 0
\(484\) 13.7833 + 2.28160i 0.626512 + 0.103709i
\(485\) 1.54954 + 1.54954i 0.0703609 + 0.0703609i
\(486\) −2.27039 + 27.6176i −0.102987 + 1.25276i
\(487\) 19.3602 0.877296 0.438648 0.898659i \(-0.355458\pi\)
0.438648 + 0.898659i \(0.355458\pi\)
\(488\) 0.335036 1.33395i 0.0151664 0.0603853i
\(489\) 39.7206 1.79623
\(490\) 0 0
\(491\) −17.1950 + 17.1950i −0.775998 + 0.775998i −0.979148 0.203149i \(-0.934882\pi\)
0.203149 + 0.979148i \(0.434882\pi\)
\(492\) −10.2180 14.2720i −0.460665 0.643430i
\(493\) 6.07576 + 6.07576i 0.273638 + 0.273638i
\(494\) −13.5838 + 11.5200i −0.611163 + 0.518311i
\(495\) −4.04491 −0.181805
\(496\) −3.28737 1.11901i −0.147607 0.0502449i
\(497\) 0 0
\(498\) 31.6388 + 37.3066i 1.41777 + 1.67175i
\(499\) −2.14113 2.14113i −0.0958501 0.0958501i 0.657556 0.753406i \(-0.271590\pi\)
−0.753406 + 0.657556i \(0.771590\pi\)
\(500\) 7.42174 5.31360i 0.331910 0.237631i
\(501\) −11.3884 11.3884i −0.508798 0.508798i
\(502\) 20.4925 + 1.68464i 0.914624 + 0.0751893i
\(503\) 34.5673i 1.54128i 0.637272 + 0.770639i \(0.280063\pi\)
−0.637272 + 0.770639i \(0.719937\pi\)
\(504\) 0 0
\(505\) 2.58688i 0.115115i
\(506\) 0.441681 5.37274i 0.0196351 0.238847i
\(507\) 53.1908 + 53.1908i 2.36228 + 2.36228i
\(508\) 18.4435 + 3.05304i 0.818299 + 0.135457i
\(509\) 11.1496 + 11.1496i 0.494199 + 0.494199i 0.909626 0.415427i \(-0.136368\pi\)
−0.415427 + 0.909626i \(0.636368\pi\)
\(510\) 7.36179 6.24334i 0.325985 0.276460i
\(511\) 0 0
\(512\) −22.6022 + 1.06733i −0.998887 + 0.0471698i
\(513\) 7.08374 0.312755
\(514\) 2.30056 + 2.71269i 0.101473 + 0.119651i
\(515\) 0.364977 + 0.364977i 0.0160828 + 0.0160828i
\(516\) −48.0188 7.94876i −2.11391 0.349925i
\(517\) 4.22957 4.22957i 0.186016 0.186016i
\(518\) 0 0
\(519\) 24.8623 1.09133
\(520\) −4.32817 7.23150i −0.189803 0.317122i
\(521\) 15.4419 0.676522 0.338261 0.941052i \(-0.390161\pi\)
0.338261 + 0.941052i \(0.390161\pi\)
\(522\) −9.69589 0.797078i −0.424377 0.0348872i
\(523\) −1.44190 1.44190i −0.0630500 0.0630500i 0.674879 0.737929i \(-0.264196\pi\)
−0.737929 + 0.674879i \(0.764196\pi\)
\(524\) −21.6001 30.1698i −0.943604 1.31797i
\(525\) 0 0
\(526\) −9.81025 + 8.31981i −0.427747 + 0.362761i
\(527\) 4.69215i 0.204393i
\(528\) −6.99076 + 20.5371i −0.304234 + 0.893764i
\(529\) −19.3805 −0.842632
\(530\) 3.53193 2.99533i 0.153417 0.130109i
\(531\) −26.2714 + 26.2714i −1.14008 + 1.14008i
\(532\) 0 0
\(533\) −14.6423 14.6423i −0.634228 0.634228i
\(534\) −0.729926 + 8.87903i −0.0315870 + 0.384233i
\(535\) 2.88450i 0.124708i
\(536\) 2.74788 10.9407i 0.118690 0.472568i
\(537\) −10.2987 −0.444420
\(538\) −8.03506 0.660545i −0.346416 0.0284781i
\(539\) 0 0
\(540\) −0.547403 + 3.30688i −0.0235565 + 0.142306i
\(541\) 14.7742 14.7742i 0.635190 0.635190i −0.314175 0.949365i \(-0.601728\pi\)
0.949365 + 0.314175i \(0.101728\pi\)
\(542\) −12.4253 + 10.5375i −0.533711 + 0.452626i
\(543\) 19.6548i 0.843469i
\(544\) −11.2064 28.4461i −0.480470 1.21962i
\(545\) 5.08293i 0.217729i
\(546\) 0 0
\(547\) 13.0675 + 13.0675i 0.558728 + 0.558728i 0.928945 0.370217i \(-0.120717\pi\)
−0.370217 + 0.928945i \(0.620717\pi\)
\(548\) 29.9703 + 4.96111i 1.28027 + 0.211928i
\(549\) −1.48785 + 1.48785i −0.0635000 + 0.0635000i
\(550\) −13.5056 1.11026i −0.575880 0.0473418i
\(551\) 3.13499i 0.133555i
\(552\) −14.1270 3.54814i −0.601285 0.151019i
\(553\) 0 0
\(554\) −29.4505 2.42106i −1.25123 0.102861i
\(555\) 7.31020 7.31020i 0.310301 0.310301i
\(556\) 2.60134 1.86244i 0.110322 0.0789849i
\(557\) 8.55871 8.55871i 0.362644 0.362644i −0.502141 0.864786i \(-0.667454\pi\)
0.864786 + 0.502141i \(0.167454\pi\)
\(558\) 3.43615 + 4.05172i 0.145464 + 0.171523i
\(559\) −57.4198 −2.42860
\(560\) 0 0
\(561\) −29.3132 −1.23760
\(562\) 18.1441 + 21.3945i 0.765362 + 0.902471i
\(563\) −19.9147 + 19.9147i −0.839306 + 0.839306i −0.988768 0.149462i \(-0.952246\pi\)
0.149462 + 0.988768i \(0.452246\pi\)
\(564\) −9.40827 13.1409i −0.396160 0.553334i
\(565\) −0.929888 + 0.929888i −0.0391207 + 0.0391207i
\(566\) −28.6773 2.35750i −1.20540 0.0990932i
\(567\) 0 0
\(568\) −17.7091 29.5883i −0.743056 1.24150i
\(569\) 23.5879i 0.988857i 0.869218 + 0.494428i \(0.164623\pi\)
−0.869218 + 0.494428i \(0.835377\pi\)
\(570\) −3.51000 0.288550i −0.147018 0.0120860i
\(571\) −15.9348 + 15.9348i −0.666849 + 0.666849i −0.956985 0.290136i \(-0.906299\pi\)
0.290136 + 0.956985i \(0.406299\pi\)
\(572\) −4.17969 + 25.2497i −0.174762 + 1.05574i
\(573\) 33.6826 + 33.6826i 1.40711 + 1.40711i
\(574\) 0 0
\(575\) 9.09835i 0.379427i
\(576\) 30.5085 + 16.3569i 1.27119 + 0.681536i
\(577\) 18.8093i 0.783040i −0.920170 0.391520i \(-0.871949\pi\)
0.920170 0.391520i \(-0.128051\pi\)
\(578\) 13.1709 11.1699i 0.547837 0.464606i
\(579\) −12.5932 + 12.5932i −0.523354 + 0.523354i
\(580\) 1.46350 + 0.242259i 0.0607684 + 0.0100593i
\(581\) 0 0
\(582\) −17.9202 1.47318i −0.742816 0.0610653i
\(583\) −14.0634 −0.582448
\(584\) 22.6341 + 37.8171i 0.936608 + 1.56488i
\(585\) 12.8933i 0.533073i
\(586\) 1.10691 13.4648i 0.0457260 0.556224i
\(587\) 12.6185 + 12.6185i 0.520820 + 0.520820i 0.917819 0.396999i \(-0.129948\pi\)
−0.396999 + 0.917819i \(0.629948\pi\)
\(588\) 0 0
\(589\) −1.21053 + 1.21053i −0.0498791 + 0.0498791i
\(590\) 4.32060 3.66418i 0.177876 0.150852i
\(591\) 56.9525 2.34271
\(592\) −14.4580 29.3803i −0.594218 1.20752i
\(593\) 25.4334i 1.04442i 0.852816 + 0.522212i \(0.174893\pi\)
−0.852816 + 0.522212i \(0.825107\pi\)
\(594\) 7.76310 6.58368i 0.318524 0.270132i
\(595\) 0 0
\(596\) 16.5220 11.8290i 0.676769 0.484533i
\(597\) 14.2183 + 14.2183i 0.581918 + 0.581918i
\(598\) −17.1258 1.40788i −0.700326 0.0575723i
\(599\) −42.2006 −1.72427 −0.862135 0.506678i \(-0.830873\pi\)
−0.862135 + 0.506678i \(0.830873\pi\)
\(600\) −8.91905 + 35.5114i −0.364118 + 1.44975i
\(601\) −29.8695 −1.21840 −0.609202 0.793015i \(-0.708510\pi\)
−0.609202 + 0.793015i \(0.708510\pi\)
\(602\) 0 0
\(603\) −12.2030 + 12.2030i −0.496944 + 0.496944i
\(604\) 3.81431 23.0424i 0.155202 0.937583i
\(605\) 2.30446 + 2.30446i 0.0936898 + 0.0936898i
\(606\) −13.7287 16.1882i −0.557692 0.657599i
\(607\) −29.4275 −1.19442 −0.597212 0.802083i \(-0.703725\pi\)
−0.597212 + 0.802083i \(0.703725\pi\)
\(608\) −4.44771 + 10.2300i −0.180378 + 0.414882i
\(609\) 0 0
\(610\) 0.244692 0.207517i 0.00990730 0.00840212i
\(611\) −13.4819 13.4819i −0.545420 0.545420i
\(612\) −7.63872 + 46.1458i −0.308777 + 1.86533i
\(613\) 16.2429 + 16.2429i 0.656045 + 0.656045i 0.954442 0.298397i \(-0.0964518\pi\)
−0.298397 + 0.954442i \(0.596452\pi\)
\(614\) −0.388241 + 4.72268i −0.0156681 + 0.190592i
\(615\) 4.09456i 0.165108i
\(616\) 0 0
\(617\) 31.2064i 1.25632i 0.778084 + 0.628161i \(0.216192\pi\)
−0.778084 + 0.628161i \(0.783808\pi\)
\(618\) −4.22090 0.346991i −0.169790 0.0139580i
\(619\) −12.9637 12.9637i −0.521053 0.521053i 0.396836 0.917890i \(-0.370108\pi\)
−0.917890 + 0.396836i \(0.870108\pi\)
\(620\) −0.471565 0.658655i −0.0189385 0.0264522i
\(621\) 4.83252 + 4.83252i 0.193922 + 0.193922i
\(622\) 13.8616 + 16.3448i 0.555799 + 0.655366i
\(623\) 0 0
\(624\) 65.4628 + 22.2833i 2.62061 + 0.892046i
\(625\) −21.7824 −0.871297
\(626\) −7.17877 + 6.08812i −0.286921 + 0.243330i
\(627\) 7.56254 + 7.56254i 0.302019 + 0.302019i
\(628\) 3.62177 2.59301i 0.144524 0.103472i
\(629\) 31.2858 31.2858i 1.24745 1.24745i
\(630\) 0 0
\(631\) 8.10970 0.322842 0.161421 0.986886i \(-0.448392\pi\)
0.161421 + 0.986886i \(0.448392\pi\)
\(632\) −3.00221 + 1.79687i −0.119421 + 0.0714757i
\(633\) −34.9016 −1.38722
\(634\) −3.07214 + 37.3704i −0.122010 + 1.48417i
\(635\) 3.08363 + 3.08363i 0.122370 + 0.122370i
\(636\) −6.20561 + 37.4883i −0.246068 + 1.48651i
\(637\) 0 0
\(638\) −2.91368 3.43564i −0.115354 0.136018i
\(639\) 52.7541i 2.08692i
\(640\) −4.43195 2.86684i −0.175188 0.113322i
\(641\) 28.0870 1.10937 0.554685 0.832060i \(-0.312839\pi\)
0.554685 + 0.832060i \(0.312839\pi\)
\(642\) −15.3082 18.0506i −0.604167 0.712399i
\(643\) 21.6759 21.6759i 0.854812 0.854812i −0.135909 0.990721i \(-0.543395\pi\)
0.990721 + 0.135909i \(0.0433955\pi\)
\(644\) 0 0
\(645\) −8.02841 8.02841i −0.316118 0.316118i
\(646\) −15.0219 1.23492i −0.591030 0.0485873i
\(647\) 46.0198i 1.80922i −0.426236 0.904612i \(-0.640161\pi\)
0.426236 0.904612i \(-0.359839\pi\)
\(648\) 4.73182 + 7.90591i 0.185883 + 0.310574i
\(649\) −17.2038 −0.675306
\(650\) −3.53901 + 43.0495i −0.138811 + 1.68854i
\(651\) 0 0
\(652\) 23.8627 17.0845i 0.934536 0.669082i
\(653\) 21.4193 21.4193i 0.838202 0.838202i −0.150420 0.988622i \(-0.548063\pi\)
0.988622 + 0.150420i \(0.0480627\pi\)
\(654\) 26.9754 + 31.8079i 1.05482 + 1.24379i
\(655\) 8.65556i 0.338201i
\(656\) −12.2773 4.17914i −0.479347 0.163168i
\(657\) 67.4255i 2.63052i
\(658\) 0 0
\(659\) −7.48634 7.48634i −0.291626 0.291626i 0.546096 0.837723i \(-0.316113\pi\)
−0.837723 + 0.546096i \(0.816113\pi\)
\(660\) −4.11480 + 2.94600i −0.160169 + 0.114673i
\(661\) −7.47069 + 7.47069i −0.290576 + 0.290576i −0.837308 0.546732i \(-0.815872\pi\)
0.546732 + 0.837308i \(0.315872\pi\)
\(662\) −1.09919 + 13.3709i −0.0427214 + 0.519675i
\(663\) 93.4368i 3.62879i
\(664\) 35.0537 + 8.80409i 1.36035 + 0.341665i
\(665\) 0 0
\(666\) −4.10438 + 49.9268i −0.159041 + 1.93462i
\(667\) 2.13868 2.13868i 0.0828102 0.0828102i
\(668\) −11.7401 1.94340i −0.454240 0.0751923i
\(669\) −12.8801 + 12.8801i −0.497972 + 0.497972i
\(670\) 2.00690 1.70200i 0.0775333 0.0657540i
\(671\) −0.974316 −0.0376130
\(672\) 0 0
\(673\) 17.2027 0.663115 0.331557 0.943435i \(-0.392426\pi\)
0.331557 + 0.943435i \(0.392426\pi\)
\(674\) 17.2953 14.6677i 0.666189 0.564977i
\(675\) 12.1476 12.1476i 0.467562 0.467562i
\(676\) 54.8334 + 9.07682i 2.10898 + 0.349108i
\(677\) 14.1608 14.1608i 0.544245 0.544245i −0.380525 0.924771i \(-0.624257\pi\)
0.924771 + 0.380525i \(0.124257\pi\)
\(678\) 0.884065 10.7540i 0.0339523 0.413006i
\(679\) 0 0
\(680\) 1.73733 6.91721i 0.0666235 0.265263i
\(681\) 20.9195i 0.801637i
\(682\) −0.201549 + 2.45170i −0.00771772 + 0.0938806i
\(683\) 0.681274 0.681274i 0.0260682 0.0260682i −0.693953 0.720021i \(-0.744132\pi\)
0.720021 + 0.693953i \(0.244132\pi\)
\(684\) 13.8759 9.93449i 0.530560 0.379855i
\(685\) 5.01082 + 5.01082i 0.191453 + 0.191453i
\(686\) 0 0
\(687\) 41.2597i 1.57416i
\(688\) −32.2669 + 15.8784i −1.23016 + 0.605359i
\(689\) 44.8277i 1.70780i
\(690\) −2.19767 2.59137i −0.0836640 0.0986518i
\(691\) −24.5272 + 24.5272i −0.933058 + 0.933058i −0.997896 0.0648375i \(-0.979347\pi\)
0.0648375 + 0.997896i \(0.479347\pi\)
\(692\) 14.9364 10.6937i 0.567795 0.406513i
\(693\) 0 0
\(694\) −0.367829 + 4.47437i −0.0139626 + 0.169845i
\(695\) 0.746313 0.0283093
\(696\) −10.4439 + 6.25087i −0.395877 + 0.236939i
\(697\) 17.5237i 0.663756i
\(698\) 4.41207 + 0.362707i 0.166999 + 0.0137287i
\(699\) −28.2796 28.2796i −1.06963 1.06963i
\(700\) 0 0
\(701\) 32.4969 32.4969i 1.22739 1.22739i 0.262444 0.964947i \(-0.415471\pi\)
0.964947 0.262444i \(-0.0845286\pi\)
\(702\) −20.9857 24.7452i −0.792055 0.933946i
\(703\) −16.1429 −0.608842
\(704\) 4.63358 + 15.3448i 0.174635 + 0.578330i
\(705\) 3.77007i 0.141989i
\(706\) 7.51780 + 8.86456i 0.282936 + 0.333622i
\(707\) 0 0
\(708\) −7.59131 + 45.8594i −0.285299 + 1.72350i
\(709\) −3.32683 3.32683i −0.124942 0.124942i 0.641871 0.766813i \(-0.278158\pi\)
−0.766813 + 0.641871i \(0.778158\pi\)
\(710\) 0.659050 8.01688i 0.0247337 0.300868i
\(711\) 5.35275 0.200744
\(712\) 3.38052 + 5.64816i 0.126690 + 0.211674i
\(713\) −1.65165 −0.0618547
\(714\) 0 0
\(715\) −4.22157 + 4.22157i −0.157878 + 0.157878i
\(716\) −6.18706 + 4.42964i −0.231221 + 0.165543i
\(717\) −54.6435 54.6435i −2.04070 2.04070i
\(718\) 33.0729 28.0483i 1.23427 1.04675i
\(719\) −18.5510 −0.691834 −0.345917 0.938265i \(-0.612432\pi\)
−0.345917 + 0.938265i \(0.612432\pi\)
\(720\) 3.56542 + 7.24537i 0.132875 + 0.270019i
\(721\) 0 0
\(722\) −13.8225 16.2987i −0.514420 0.606575i
\(723\) 43.9358 + 43.9358i 1.63399 + 1.63399i
\(724\) −8.45389 11.8079i −0.314186 0.438838i
\(725\) −5.37606 5.37606i −0.199662 0.199662i
\(726\) −26.6508 2.19090i −0.989104 0.0813121i
\(727\) 5.96613i 0.221272i 0.993861 + 0.110636i \(0.0352887\pi\)
−0.993861 + 0.110636i \(0.964711\pi\)
\(728\) 0 0
\(729\) 43.2669i 1.60248i
\(730\) −0.842339 + 10.2465i −0.0311764 + 0.379238i
\(731\) −34.3595 34.3595i −1.27083 1.27083i
\(732\) −0.429926 + 2.59720i −0.0158905 + 0.0959952i
\(733\) −15.2819 15.2819i −0.564452 0.564452i 0.366117 0.930569i \(-0.380687\pi\)
−0.930569 + 0.366117i \(0.880687\pi\)
\(734\) 19.2237 16.3031i 0.709561 0.601760i
\(735\) 0 0
\(736\) −10.0131 + 3.94468i −0.369089 + 0.145403i
\(737\) −7.99108 −0.294355
\(738\) 12.8329 + 15.1319i 0.472387 + 0.557012i
\(739\) −25.6074 25.6074i −0.941984 0.941984i 0.0564227 0.998407i \(-0.482031\pi\)
−0.998407 + 0.0564227i \(0.982031\pi\)
\(740\) 1.24746 7.53595i 0.0458575 0.277027i
\(741\) 24.1059 24.1059i 0.885552 0.885552i
\(742\) 0 0
\(743\) 16.2749 0.597067 0.298533 0.954399i \(-0.403503\pi\)
0.298533 + 0.954399i \(0.403503\pi\)
\(744\) 6.44648 + 1.61910i 0.236339 + 0.0593590i
\(745\) 4.74009 0.173663
\(746\) 3.50114 + 0.287821i 0.128186 + 0.0105379i
\(747\) −39.0979 39.0979i −1.43052 1.43052i
\(748\) −17.6103 + 12.6081i −0.643897 + 0.460998i
\(749\) 0 0
\(750\) −13.3245 + 11.3001i −0.486540 + 0.412622i
\(751\) 18.3033i 0.667898i −0.942591 0.333949i \(-0.891619\pi\)
0.942591 0.333949i \(-0.108381\pi\)
\(752\) −11.3043 3.84795i −0.412226 0.140320i
\(753\) −39.3557 −1.43420
\(754\) −10.9512 + 9.28745i −0.398820 + 0.338229i
\(755\) 3.85253 3.85253i 0.140208 0.140208i
\(756\) 0 0
\(757\) −16.6944 16.6944i −0.606767 0.606767i 0.335333 0.942100i \(-0.391151\pi\)
−0.942100 + 0.335333i \(0.891151\pi\)
\(758\) 0.0862034 1.04860i 0.00313105 0.0380870i
\(759\) 10.3183i 0.374531i
\(760\) −2.23280 + 1.33636i −0.0809920 + 0.0484751i
\(761\) 8.86780 0.321458 0.160729 0.986999i \(-0.448616\pi\)
0.160729 + 0.986999i \(0.448616\pi\)
\(762\) −35.6617 2.93167i −1.29189 0.106203i
\(763\) 0 0
\(764\) 34.7228 + 5.74781i 1.25623 + 0.207949i
\(765\) −7.71526 + 7.71526i −0.278946 + 0.278946i
\(766\) 25.6543 21.7568i 0.926929 0.786104i
\(767\) 54.8376i 1.98007i
\(768\) 42.9487 5.58053i 1.54978 0.201370i
\(769\) 1.14344i 0.0412335i 0.999787 + 0.0206167i \(0.00656298\pi\)
−0.999787 + 0.0206167i \(0.993437\pi\)
\(770\) 0 0
\(771\) −4.81396 4.81396i −0.173370 0.173370i
\(772\) −2.14898 + 12.9821i −0.0773435 + 0.467235i
\(773\) 3.84402 3.84402i 0.138260 0.138260i −0.634590 0.772849i \(-0.718831\pi\)
0.772849 + 0.634590i \(0.218831\pi\)
\(774\) 54.8320 + 4.50762i 1.97090 + 0.162023i
\(775\) 4.15179i 0.149137i
\(776\) −11.3995 + 6.82276i −0.409217 + 0.244923i
\(777\) 0 0
\(778\) −34.1725 2.80925i −1.22514 0.100716i
\(779\) −4.52095 + 4.52095i −0.161980 + 0.161980i
\(780\) 9.39048 + 13.1161i 0.336233 + 0.469631i
\(781\) −17.2729 + 17.2729i −0.618073 + 0.618073i
\(782\) −9.40548 11.0904i −0.336339 0.396592i
\(783\) 5.71091 0.204091
\(784\) 0 0
\(785\) 1.03907 0.0370859
\(786\) 45.9356 + 54.1647i 1.63847 + 1.93199i
\(787\) 36.0651 36.0651i 1.28558 1.28558i 0.348142 0.937442i \(-0.386813\pi\)
0.937442 0.348142i \(-0.113187\pi\)
\(788\) 34.2151 24.4963i 1.21886 0.872645i
\(789\) 17.4094 17.4094i 0.619789 0.619789i
\(790\) −0.813442 0.0668713i −0.0289410 0.00237917i
\(791\) 0 0
\(792\) 5.97350 23.7836i 0.212259 0.845115i
\(793\) 3.10567i 0.110286i
\(794\) 5.94847 + 0.489011i 0.211103 + 0.0173544i
\(795\) −6.26779 + 6.26779i −0.222295 + 0.222295i
\(796\) 14.6574 + 2.42631i 0.519519 + 0.0859982i
\(797\) −26.5433 26.5433i −0.940211 0.940211i 0.0581002 0.998311i \(-0.481496\pi\)
−0.998311 + 0.0581002i \(0.981496\pi\)
\(798\) 0 0
\(799\) 16.1349i 0.570813i
\(800\) 9.91584 + 25.1702i 0.350578 + 0.889902i
\(801\) 10.0703i 0.355817i
\(802\) −19.4393 + 16.4860i −0.686427 + 0.582141i
\(803\) 22.0767 22.0767i 0.779069 0.779069i
\(804\) −3.52613 + 21.3015i −0.124357 + 0.751247i
\(805\) 0 0
\(806\) 7.81490 + 0.642446i 0.275268 + 0.0226292i
\(807\) 15.4313 0.543208
\(808\) −15.2106 3.82029i −0.535106 0.134397i
\(809\) 20.3627i 0.715914i −0.933738 0.357957i \(-0.883473\pi\)
0.933738 0.357957i \(-0.116527\pi\)
\(810\) −0.176097 + 2.14209i −0.00618741 + 0.0752654i
\(811\) −31.8932 31.8932i −1.11992 1.11992i −0.991752 0.128171i \(-0.959089\pi\)
−0.128171 0.991752i \(-0.540911\pi\)
\(812\) 0 0
\(813\) 22.0500 22.0500i 0.773327 0.773327i
\(814\) −17.6911 + 15.0033i −0.620072 + 0.525867i
\(815\) 6.84609 0.239808
\(816\) 25.8383 + 52.5066i 0.904521 + 1.83810i
\(817\) 17.7289i 0.620256i
\(818\) 30.1660 25.5830i 1.05473 0.894490i
\(819\) 0 0
\(820\) −1.76114 2.45986i −0.0615018 0.0859022i
\(821\) −17.3333 17.3333i −0.604937 0.604937i 0.336682 0.941618i \(-0.390695\pi\)
−0.941618 + 0.336682i \(0.890695\pi\)
\(822\) −57.9494 4.76390i −2.02122 0.166160i
\(823\) 10.3395 0.360413 0.180207 0.983629i \(-0.442323\pi\)
0.180207 + 0.983629i \(0.442323\pi\)
\(824\) −2.68501 + 1.60703i −0.0935369 + 0.0559834i
\(825\) 25.9374 0.903024
\(826\) 0 0
\(827\) 33.0264 33.0264i 1.14844 1.14844i 0.161581 0.986859i \(-0.448341\pi\)
0.986859 0.161581i \(-0.0516594\pi\)
\(828\) 16.2435 + 2.68885i 0.564499 + 0.0934440i
\(829\) 26.5039 + 26.5039i 0.920520 + 0.920520i 0.997066 0.0765465i \(-0.0243894\pi\)
−0.0765465 + 0.997066i \(0.524389\pi\)
\(830\) 5.45314 + 6.43003i 0.189281 + 0.223190i
\(831\) 56.5596 1.96203
\(832\) 48.9122 14.7697i 1.69573 0.512048i
\(833\) 0 0
\(834\) −4.67027 + 3.96073i −0.161718 + 0.137149i
\(835\) −1.96287 1.96287i −0.0679279 0.0679279i
\(836\) 7.79609 + 1.29052i 0.269633 + 0.0446336i
\(837\) −2.20519 2.20519i −0.0762226 0.0762226i
\(838\) 1.71514 20.8634i 0.0592485 0.720715i
\(839\) 41.5802i 1.43551i −0.696296 0.717754i \(-0.745170\pi\)
0.696296 0.717754i \(-0.254830\pi\)
\(840\) 0 0
\(841\) 26.4726i 0.912847i
\(842\) −24.6612 2.02734i −0.849881 0.0698669i
\(843\) −37.9668 37.9668i −1.30765 1.30765i
\(844\) −20.9677 + 15.0118i −0.721736 + 0.516728i
\(845\) 9.16776 + 9.16776i 0.315381 + 0.315381i
\(846\) 11.8159 + 13.9327i 0.406241 + 0.479016i
\(847\) 0 0
\(848\) 12.3963 + 25.1908i 0.425691 + 0.865056i
\(849\) 55.0747 1.89016
\(850\) −27.8782 + 23.6428i −0.956214 + 0.810940i
\(851\) −11.0127 11.0127i −0.377510 0.377510i
\(852\) 38.4219 + 53.6656i 1.31631 + 1.83855i
\(853\) −3.78632 + 3.78632i −0.129641 + 0.129641i −0.768950 0.639309i \(-0.779221\pi\)
0.639309 + 0.768950i \(0.279221\pi\)
\(854\) 0 0
\(855\) 3.98094 0.136145
\(856\) −16.9605 4.25980i −0.579698 0.145597i
\(857\) 19.8789 0.679049 0.339524 0.940597i \(-0.389734\pi\)
0.339524 + 0.940597i \(0.389734\pi\)
\(858\) 4.01354 48.8219i 0.137020 1.66675i
\(859\) 9.05536 + 9.05536i 0.308965 + 0.308965i 0.844508 0.535543i \(-0.179893\pi\)
−0.535543 + 0.844508i \(0.679893\pi\)
\(860\) −8.27634 1.37002i −0.282221 0.0467173i
\(861\) 0 0
\(862\) 12.4727 + 14.7071i 0.424821 + 0.500925i
\(863\) 24.2418i 0.825199i −0.910913 0.412599i \(-0.864621\pi\)
0.910913 0.412599i \(-0.135379\pi\)
\(864\) −18.6357 8.10225i −0.633999 0.275644i
\(865\) 4.28517 0.145700
\(866\) −17.5235 20.6627i −0.595471 0.702146i
\(867\) −23.3732 + 23.3732i −0.793794 + 0.793794i
\(868\) 0 0
\(869\) 1.75262 + 1.75262i 0.0594534 + 0.0594534i
\(870\) −2.82976 0.232629i −0.0959380 0.00788686i
\(871\) 25.4719i 0.863081i
\(872\) 29.8870 + 7.50643i 1.01210 + 0.254200i
\(873\) 20.3245 0.687881
\(874\) −0.434695 + 5.28776i −0.0147038 + 0.178861i
\(875\) 0 0
\(876\) −49.1075 68.5905i −1.65919 2.31746i
\(877\) −15.3197 + 15.3197i −0.517308 + 0.517308i −0.916756 0.399448i \(-0.869202\pi\)
0.399448 + 0.916756i \(0.369202\pi\)
\(878\) 7.84118 + 9.24587i 0.264627 + 0.312033i
\(879\) 25.8590i 0.872202i
\(880\) −1.20490 + 3.53970i −0.0406172 + 0.119323i
\(881\) 15.3375i 0.516733i 0.966047 + 0.258367i \(0.0831842\pi\)
−0.966047 + 0.258367i \(0.916816\pi\)
\(882\) 0 0
\(883\) 35.7596 + 35.7596i 1.20341 + 1.20341i 0.973124 + 0.230282i \(0.0739648\pi\)
0.230282 + 0.973124i \(0.426035\pi\)
\(884\) 40.1888 + 56.1335i 1.35170 + 1.88797i
\(885\) −7.66737 + 7.66737i −0.257736 + 0.257736i
\(886\) 2.42683 29.5207i 0.0815309 0.991766i
\(887\) 32.3316i 1.08559i −0.839865 0.542795i \(-0.817366\pi\)
0.839865 0.542795i \(-0.182634\pi\)
\(888\) 32.1875 + 53.7788i 1.08014 + 1.80470i
\(889\) 0 0
\(890\) −0.125807 + 1.53036i −0.00421707 + 0.0512977i
\(891\) 4.61528 4.61528i 0.154618 0.154618i
\(892\) −2.19794 + 13.2778i −0.0735924 + 0.444575i
\(893\) −4.16267 + 4.16267i −0.139299 + 0.139299i
\(894\) −29.6625 + 25.1560i −0.992062 + 0.841341i
\(895\) −1.77504 −0.0593330
\(896\) 0 0
\(897\) 32.8900 1.09817
\(898\) 26.3462 22.3435i 0.879185 0.745614i
\(899\) −0.975931 + 0.975931i −0.0325491 + 0.0325491i
\(900\) 6.75903 40.8316i 0.225301 1.36105i
\(901\) −26.8245 + 26.8245i −0.893654 + 0.893654i
\(902\) −0.752722 + 9.15633i −0.0250629 + 0.304872i
\(903\) 0 0
\(904\) −4.09438 6.84088i −0.136177 0.227524i
\(905\) 3.38763i 0.112609i
\(906\) −3.66269 + 44.5540i −0.121685 + 1.48021i
\(907\) 22.3866 22.3866i 0.743336 0.743336i −0.229882 0.973218i \(-0.573834\pi\)
0.973218 + 0.229882i \(0.0738342\pi\)
\(908\) −8.99786 12.5677i −0.298604 0.417074i
\(909\) 16.9654 + 16.9654i 0.562707 + 0.562707i
\(910\) 0 0
\(911\) 7.17911i 0.237854i 0.992903 + 0.118927i \(0.0379455\pi\)
−0.992903 + 0.118927i \(0.962054\pi\)
\(912\) 6.88019 20.2123i 0.227826 0.669296i
\(913\) 25.6031i 0.847339i
\(914\) 3.30365 + 3.89548i 0.109275 + 0.128851i
\(915\) −0.434233 + 0.434233i −0.0143553 + 0.0143553i
\(916\) 17.7465 + 24.7874i 0.586362 + 0.818998i
\(917\) 0 0
\(918\) 2.24962 27.3650i 0.0742484 0.903179i
\(919\) 2.36484 0.0780087 0.0390044 0.999239i \(-0.487581\pi\)
0.0390044 + 0.999239i \(0.487581\pi\)
\(920\) −2.43488 0.611544i −0.0802755 0.0201620i
\(921\) 9.06988i 0.298863i
\(922\) 50.4043 + 4.14363i 1.65998 + 0.136463i
\(923\) 55.0580 + 55.0580i 1.81226 + 1.81226i
\(924\) 0 0
\(925\) −27.6828 + 27.6828i −0.910206 + 0.910206i
\(926\) −7.32831 8.64112i −0.240823 0.283965i
\(927\) 4.78722 0.157233
\(928\) −3.58574 + 8.24743i −0.117708 + 0.270735i
\(929\) 58.4828i 1.91876i 0.282119 + 0.959379i \(0.408963\pi\)
−0.282119 + 0.959379i \(0.591037\pi\)
\(930\) 1.00285 + 1.18250i 0.0328847 + 0.0387758i
\(931\) 0 0
\(932\) −29.1529 4.82581i −0.954936 0.158075i
\(933\) −29.0056 29.0056i −0.949601 0.949601i
\(934\) 2.14723 26.1195i 0.0702596 0.854657i
\(935\) −5.05231 −0.165228
\(936\) −75.8112 19.0408i −2.47797 0.622367i
\(937\) −13.4613 −0.439761 −0.219881 0.975527i \(-0.570567\pi\)
−0.219881 + 0.975527i \(0.570567\pi\)
\(938\) 0 0
\(939\) 12.7395 12.7395i 0.415738 0.415738i
\(940\) −1.62158 2.26492i −0.0528899 0.0738737i
\(941\) −10.9217 10.9217i −0.356036 0.356036i 0.506313 0.862350i \(-0.331008\pi\)
−0.862350 + 0.506313i \(0.831008\pi\)
\(942\) −6.50227 + 5.51441i −0.211855 + 0.179669i
\(943\) −6.16838 −0.200870
\(944\) 15.1644 + 30.8159i 0.493558 + 1.00297i
\(945\) 0 0
\(946\) 16.4774 + 19.4292i 0.535726 + 0.631697i
\(947\) 22.0847 + 22.0847i 0.717657 + 0.717657i 0.968125 0.250468i \(-0.0805843\pi\)
−0.250468 + 0.968125i \(0.580584\pi\)
\(948\) 5.44524 3.89852i 0.176853 0.126618i
\(949\) −70.3703 70.3703i −2.28432 2.28432i
\(950\) 13.2920 + 1.09270i 0.431248 + 0.0354520i
\(951\) 71.7697i 2.32729i
\(952\) 0 0
\(953\) 15.7802i 0.511170i −0.966787 0.255585i \(-0.917732\pi\)
0.966787 0.255585i \(-0.0822680\pi\)
\(954\) 3.51911 42.8074i 0.113935 1.38594i
\(955\) 5.80540 + 5.80540i 0.187858 + 0.187858i
\(956\) −56.3310 9.32472i −1.82187 0.301583i
\(957\) 6.09692 + 6.09692i 0.197085 + 0.197085i
\(958\) 29.5275 25.0415i 0.953989 0.809053i
\(959\) 0 0
\(960\) 8.90398 + 4.77378i 0.287375 + 0.154073i
\(961\) −30.2463 −0.975688
\(962\) 47.8237 + 56.3909i 1.54190 + 1.81812i
\(963\) 18.9173 + 18.9173i 0.609600 + 0.609600i
\(964\) 45.2926 + 7.49748i 1.45878 + 0.241478i
\(965\) −2.17051 + 2.17051i −0.0698712 + 0.0698712i
\(966\) 0 0
\(967\) −44.7046 −1.43760 −0.718801 0.695216i \(-0.755309\pi\)
−0.718801 + 0.695216i \(0.755309\pi\)
\(968\) −16.9532 + 10.1468i −0.544896 + 0.326129i
\(969\) 28.8495 0.926780
\(970\) −3.08866 0.253912i −0.0991708 0.00815262i
\(971\) −41.1611 41.1611i −1.32092 1.32092i −0.913030 0.407893i \(-0.866264\pi\)
−0.407893 0.913030i \(-0.633736\pi\)
\(972\) −22.8133 31.8643i −0.731736 1.02205i
\(973\) 0 0
\(974\) −20.8814 + 17.7089i −0.669082 + 0.567431i
\(975\) 82.6764i 2.64776i
\(976\) 0.858817 + 1.74522i 0.0274901 + 0.0558632i
\(977\) −20.8688 −0.667653 −0.333827 0.942635i \(-0.608340\pi\)
−0.333827 + 0.942635i \(0.608340\pi\)
\(978\) −42.8414 + 36.3327i −1.36992 + 1.16179i
\(979\) 3.29726 3.29726i 0.105381 0.105381i
\(980\) 0 0
\(981\) −33.3351 33.3351i −1.06431 1.06431i
\(982\) 2.81762 34.2743i 0.0899138 1.09374i
\(983\) 42.1732i 1.34512i 0.740045 + 0.672558i \(0.234804\pi\)
−0.740045 + 0.672558i \(0.765196\pi\)
\(984\) 24.0755 + 6.04681i 0.767500 + 0.192765i
\(985\) 9.81613 0.312768
\(986\) −12.1107 0.995592i −0.385682 0.0317061i
\(987\) 0 0
\(988\) 4.11359 24.8503i 0.130871 0.790594i
\(989\) −12.0946 + 12.0946i −0.384587 + 0.384587i
\(990\) 4.36272 3.69991i 0.138656 0.117591i
\(991\) 17.0880i 0.542819i −0.962464 0.271410i \(-0.912510\pi\)
0.962464 0.271410i \(-0.0874898\pi\)
\(992\) 4.56922 1.80005i 0.145073 0.0571516i
\(993\) 25.6788i 0.814891i
\(994\) 0 0
\(995\) 2.45062 + 2.45062i 0.0776898 + 0.0776898i
\(996\) −68.2492 11.2976i −2.16256 0.357978i
\(997\) 20.0894 20.0894i 0.636239 0.636239i −0.313387 0.949626i \(-0.601464\pi\)
0.949626 + 0.313387i \(0.101464\pi\)
\(998\) 4.26786 + 0.350852i 0.135097 + 0.0111060i
\(999\) 29.4071i 0.930398i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.j.a.587.8 56
7.2 even 3 784.2.w.f.619.13 56
7.3 odd 6 784.2.w.f.411.7 56
7.4 even 3 112.2.v.a.75.7 yes 56
7.5 odd 6 112.2.v.a.59.13 yes 56
7.6 odd 2 inner 784.2.j.a.587.7 56
16.3 odd 4 inner 784.2.j.a.195.7 56
28.11 odd 6 448.2.z.a.271.13 56
28.19 even 6 448.2.z.a.143.13 56
56.5 odd 6 896.2.z.b.31.13 56
56.11 odd 6 896.2.z.a.159.2 56
56.19 even 6 896.2.z.a.31.2 56
56.53 even 6 896.2.z.b.159.13 56
112.3 even 12 784.2.w.f.19.13 56
112.5 odd 12 896.2.z.a.479.2 56
112.11 odd 12 896.2.z.b.607.13 56
112.19 even 12 112.2.v.a.3.7 56
112.51 odd 12 784.2.w.f.227.7 56
112.53 even 12 896.2.z.a.607.2 56
112.61 odd 12 448.2.z.a.367.13 56
112.67 odd 12 112.2.v.a.19.13 yes 56
112.75 even 12 896.2.z.b.479.13 56
112.83 even 4 inner 784.2.j.a.195.8 56
112.109 even 12 448.2.z.a.47.13 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.7 56 112.19 even 12
112.2.v.a.19.13 yes 56 112.67 odd 12
112.2.v.a.59.13 yes 56 7.5 odd 6
112.2.v.a.75.7 yes 56 7.4 even 3
448.2.z.a.47.13 56 112.109 even 12
448.2.z.a.143.13 56 28.19 even 6
448.2.z.a.271.13 56 28.11 odd 6
448.2.z.a.367.13 56 112.61 odd 12
784.2.j.a.195.7 56 16.3 odd 4 inner
784.2.j.a.195.8 56 112.83 even 4 inner
784.2.j.a.587.7 56 7.6 odd 2 inner
784.2.j.a.587.8 56 1.1 even 1 trivial
784.2.w.f.19.13 56 112.3 even 12
784.2.w.f.227.7 56 112.51 odd 12
784.2.w.f.411.7 56 7.3 odd 6
784.2.w.f.619.13 56 7.2 even 3
896.2.z.a.31.2 56 56.19 even 6
896.2.z.a.159.2 56 56.11 odd 6
896.2.z.a.479.2 56 112.5 odd 12
896.2.z.a.607.2 56 112.53 even 12
896.2.z.b.31.13 56 56.5 odd 6
896.2.z.b.159.13 56 56.53 even 6
896.2.z.b.479.13 56 112.75 even 12
896.2.z.b.607.13 56 112.11 odd 12