Properties

Label 4-768e2-1.1-c2e2-0-2
Degree $4$
Conductor $589824$
Sign $1$
Analytic cond. $437.917$
Root an. cond. $4.57454$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·5-s − 3·9-s − 36·17-s − 2·25-s + 8·29-s + 144·37-s − 36·41-s + 24·45-s + 50·49-s − 88·53-s − 144·61-s + 164·73-s + 9·81-s + 288·85-s − 252·89-s + 220·97-s − 184·101-s − 288·109-s − 252·113-s + 194·121-s + 344·125-s + 127-s + 131-s + 137-s + 139-s − 64·145-s + 149-s + ⋯
L(s)  = 1  − 8/5·5-s − 1/3·9-s − 2.11·17-s − 0.0799·25-s + 8/29·29-s + 3.89·37-s − 0.878·41-s + 8/15·45-s + 1.02·49-s − 1.66·53-s − 2.36·61-s + 2.24·73-s + 1/9·81-s + 3.38·85-s − 2.83·89-s + 2.26·97-s − 1.82·101-s − 2.64·109-s − 2.23·113-s + 1.60·121-s + 2.75·125-s + 0.00787·127-s + 0.00763·131-s + 0.00729·137-s + 0.00719·139-s − 0.441·145-s + 0.00671·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 589824 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 589824 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(589824\)    =    \(2^{16} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(437.917\)
Root analytic conductor: \(4.57454\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 589824,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.2738871721\)
\(L(\frac12)\) \(\approx\) \(0.2738871721\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + p T^{2} \)
good5$C_2$ \( ( 1 + 4 T + p^{2} T^{2} )^{2} \)
7$C_2^2$ \( 1 - 50 T^{2} + p^{4} T^{4} \)
11$C_2^2$ \( 1 - 194 T^{2} + p^{4} T^{4} \)
13$C_2$ \( ( 1 + p^{2} T^{2} )^{2} \)
17$C_2$ \( ( 1 + 18 T + p^{2} T^{2} )^{2} \)
19$C_2^2$ \( 1 - 290 T^{2} + p^{4} T^{4} \)
23$C_2^2$ \( 1 + 670 T^{2} + p^{4} T^{4} \)
29$C_2$ \( ( 1 - 4 T + p^{2} T^{2} )^{2} \)
31$C_2^2$ \( 1 + 430 T^{2} + p^{4} T^{4} \)
37$C_2$ \( ( 1 - 72 T + p^{2} T^{2} )^{2} \)
41$C_2$ \( ( 1 + 18 T + p^{2} T^{2} )^{2} \)
43$C_2^2$ \( 1 + 190 T^{2} + p^{4} T^{4} \)
47$C_2^2$ \( 1 - 2690 T^{2} + p^{4} T^{4} \)
53$C_2$ \( ( 1 + 44 T + p^{2} T^{2} )^{2} \)
59$C_2^2$ \( 1 - 3074 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 + 72 T + p^{2} T^{2} )^{2} \)
67$C_2^2$ \( 1 - 8546 T^{2} + p^{4} T^{4} \)
71$C_2^2$ \( 1 - 8354 T^{2} + p^{4} T^{4} \)
73$C_2$ \( ( 1 - 82 T + p^{2} T^{2} )^{2} \)
79$C_2^2$ \( 1 - 8594 T^{2} + p^{4} T^{4} \)
83$C_2^2$ \( 1 + 3550 T^{2} + p^{4} T^{4} \)
89$C_2$ \( ( 1 + 126 T + p^{2} T^{2} )^{2} \)
97$C_2$ \( ( 1 - 110 T + p^{2} T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.51441758882441606494961169666, −9.683812991124919364960528717269, −9.497887904497105797759077795865, −9.123393359606238580007183979689, −8.329739780746190286146620614345, −8.303843887130542466431687944384, −7.78453576834799799880328189499, −7.46080457157381997766701586741, −6.91159832148606095664768353703, −6.23874225324380320766477949299, −6.22909918451600164528141805674, −5.39929534159301542481198665948, −4.65001419196546255673891595530, −4.37006153693629314802574784735, −4.05663567865512245022222782329, −3.42116533377291872565787190598, −2.69530604468412537482281238030, −2.28913126131634597050883117703, −1.22954929847052952831888931752, −0.19259348445552987089425141209, 0.19259348445552987089425141209, 1.22954929847052952831888931752, 2.28913126131634597050883117703, 2.69530604468412537482281238030, 3.42116533377291872565787190598, 4.05663567865512245022222782329, 4.37006153693629314802574784735, 4.65001419196546255673891595530, 5.39929534159301542481198665948, 6.22909918451600164528141805674, 6.23874225324380320766477949299, 6.91159832148606095664768353703, 7.46080457157381997766701586741, 7.78453576834799799880328189499, 8.303843887130542466431687944384, 8.329739780746190286146620614345, 9.123393359606238580007183979689, 9.497887904497105797759077795865, 9.683812991124919364960528717269, 10.51441758882441606494961169666

Graph of the $Z$-function along the critical line