L(s) = 1 | + (0.561 + 1.29i)2-s + 0.777i·3-s + (−1.36 + 1.45i)4-s + i·5-s + (−1.00 + 0.436i)6-s + 2.42·7-s + (−2.66 − 0.957i)8-s + 2.39·9-s + (−1.29 + 0.561i)10-s + 2.16i·11-s + (−1.13 − 1.06i)12-s + 3.60i·13-s + (1.36 + 3.14i)14-s − 0.777·15-s + (−0.252 − 3.99i)16-s − 3.85·17-s + ⋯ |
L(s) = 1 | + (0.397 + 0.917i)2-s + 0.448i·3-s + (−0.684 + 0.729i)4-s + 0.447i·5-s + (−0.412 + 0.178i)6-s + 0.917·7-s + (−0.940 − 0.338i)8-s + 0.798·9-s + (−0.410 + 0.177i)10-s + 0.652i·11-s + (−0.327 − 0.307i)12-s + 1.00i·13-s + (0.364 + 0.841i)14-s − 0.200·15-s + (−0.0630 − 0.998i)16-s − 0.934·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.940 - 0.338i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.940 - 0.338i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.315773 + 1.81018i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.315773 + 1.81018i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.561 - 1.29i)T \) |
| 5 | \( 1 - iT \) |
| 19 | \( 1 - iT \) |
good | 3 | \( 1 - 0.777iT - 3T^{2} \) |
| 7 | \( 1 - 2.42T + 7T^{2} \) |
| 11 | \( 1 - 2.16iT - 11T^{2} \) |
| 13 | \( 1 - 3.60iT - 13T^{2} \) |
| 17 | \( 1 + 3.85T + 17T^{2} \) |
| 23 | \( 1 - 5.10T + 23T^{2} \) |
| 29 | \( 1 - 0.0158iT - 29T^{2} \) |
| 31 | \( 1 + 9.21T + 31T^{2} \) |
| 37 | \( 1 + 11.4iT - 37T^{2} \) |
| 41 | \( 1 - 11.4T + 41T^{2} \) |
| 43 | \( 1 - 5.75iT - 43T^{2} \) |
| 47 | \( 1 + 12.1T + 47T^{2} \) |
| 53 | \( 1 + 2.84iT - 53T^{2} \) |
| 59 | \( 1 + 5.56iT - 59T^{2} \) |
| 61 | \( 1 - 1.31iT - 61T^{2} \) |
| 67 | \( 1 + 4.07iT - 67T^{2} \) |
| 71 | \( 1 - 15.3T + 71T^{2} \) |
| 73 | \( 1 + 7.41T + 73T^{2} \) |
| 79 | \( 1 - 2.07T + 79T^{2} \) |
| 83 | \( 1 - 16.3iT - 83T^{2} \) |
| 89 | \( 1 - 14.8T + 89T^{2} \) |
| 97 | \( 1 - 14.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.86098075747023888051921280093, −9.496042751707357874487901794298, −9.128531374676142875073682300697, −7.87666648418221350555190078280, −7.18684939198374387767012298067, −6.49316263124565794040022214236, −5.18490553336892050578678713045, −4.49708290126206581651714769951, −3.72635802596941814708786391371, −2.02350849725625187675904849949,
0.883275893867414349699890236373, 1.95615745935863921240341975232, 3.27873445490173669224146810746, 4.51430390752739649427878771259, 5.16284825741872460851274390753, 6.23747553760841867531529783433, 7.46588420848021360913207153398, 8.413967414072176628631087226799, 9.127344996504584942652355420892, 10.16807780841901631376851320814