Properties

Label 760.2.f.b.381.28
Level $760$
Weight $2$
Character 760.381
Analytic conductor $6.069$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [760,2,Mod(381,760)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("760.381"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(760, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 760 = 2^{3} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 760.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.06863055362\)
Analytic rank: \(0\)
Dimension: \(44\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 381.28
Character \(\chi\) \(=\) 760.381
Dual form 760.2.f.b.381.27

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.561724 + 1.29787i) q^{2} +0.777674i q^{3} +(-1.36893 + 1.45809i) q^{4} +1.00000i q^{5} +(-1.00932 + 0.436838i) q^{6} +2.42638 q^{7} +(-2.66137 - 0.957654i) q^{8} +2.39522 q^{9} +(-1.29787 + 0.561724i) q^{10} +2.16463i q^{11} +(-1.13392 - 1.06458i) q^{12} +3.60762i q^{13} +(1.36296 + 3.14913i) q^{14} -0.777674 q^{15} +(-0.252044 - 3.99205i) q^{16} -3.85504 q^{17} +(1.34545 + 3.10869i) q^{18} +1.00000i q^{19} +(-1.45809 - 1.36893i) q^{20} +1.88693i q^{21} +(-2.80941 + 1.21592i) q^{22} +5.10533 q^{23} +(0.744743 - 2.06968i) q^{24} -1.00000 q^{25} +(-4.68222 + 2.02648i) q^{26} +4.19572i q^{27} +(-3.32155 + 3.53788i) q^{28} +0.0158030i q^{29} +(-0.436838 - 1.00932i) q^{30} -9.21232 q^{31} +(5.03958 - 2.56955i) q^{32} -1.68338 q^{33} +(-2.16547 - 5.00334i) q^{34} +2.42638i q^{35} +(-3.27890 + 3.49245i) q^{36} -11.4598i q^{37} +(-1.29787 + 0.561724i) q^{38} -2.80555 q^{39} +(0.957654 - 2.66137i) q^{40} +11.4676 q^{41} +(-2.44899 + 1.05994i) q^{42} +5.75007i q^{43} +(-3.15622 - 2.96323i) q^{44} +2.39522i q^{45} +(2.86779 + 6.62606i) q^{46} -12.1163 q^{47} +(3.10451 - 0.196008i) q^{48} -1.11267 q^{49} +(-0.561724 - 1.29787i) q^{50} -2.99796i q^{51} +(-5.26022 - 4.93858i) q^{52} -2.84802i q^{53} +(-5.44550 + 2.35684i) q^{54} -2.16463 q^{55} +(-6.45750 - 2.32364i) q^{56} -0.777674 q^{57} +(-0.0205102 + 0.00887690i) q^{58} -5.56877i q^{59} +(1.06458 - 1.13392i) q^{60} +1.31105i q^{61} +(-5.17478 - 11.9564i) q^{62} +5.81173 q^{63} +(6.16580 + 5.09735i) q^{64} -3.60762 q^{65} +(-0.945592 - 2.18480i) q^{66} -4.07518i q^{67} +(5.27729 - 5.62099i) q^{68} +3.97028i q^{69} +(-3.14913 + 1.36296i) q^{70} +15.3553 q^{71} +(-6.37458 - 2.29380i) q^{72} -7.41737 q^{73} +(14.8733 - 6.43722i) q^{74} -0.777674i q^{75} +(-1.45809 - 1.36893i) q^{76} +5.25222i q^{77} +(-1.57594 - 3.64124i) q^{78} +2.07712 q^{79} +(3.99205 - 0.252044i) q^{80} +3.92277 q^{81} +(6.44162 + 14.8835i) q^{82} +16.3734i q^{83} +(-2.75132 - 2.58309i) q^{84} -3.85504i q^{85} +(-7.46285 + 3.22995i) q^{86} -0.0122896 q^{87} +(2.07297 - 5.76089i) q^{88} +14.8972 q^{89} +(-3.10869 + 1.34545i) q^{90} +8.75345i q^{91} +(-6.98886 + 7.44403i) q^{92} -7.16418i q^{93} +(-6.80604 - 15.7254i) q^{94} -1.00000 q^{95} +(1.99827 + 3.91915i) q^{96} +14.3523 q^{97} +(-0.625014 - 1.44410i) q^{98} +5.18477i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 2 q^{2} - 2 q^{4} - 6 q^{6} + 4 q^{7} + 8 q^{8} - 60 q^{9} + 4 q^{12} + 4 q^{14} - 6 q^{16} + 24 q^{17} - 14 q^{18} - 4 q^{20} - 4 q^{22} + 4 q^{23} + 2 q^{24} - 44 q^{25} + 18 q^{26} - 14 q^{28}+ \cdots + 78 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/760\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(381\) \(401\) \(457\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.561724 + 1.29787i 0.397199 + 0.917733i
\(3\) 0.777674i 0.448990i 0.974475 + 0.224495i \(0.0720733\pi\)
−0.974475 + 0.224495i \(0.927927\pi\)
\(4\) −1.36893 + 1.45809i −0.684467 + 0.729044i
\(5\) 1.00000i 0.447214i
\(6\) −1.00932 + 0.436838i −0.412053 + 0.178338i
\(7\) 2.42638 0.917086 0.458543 0.888672i \(-0.348371\pi\)
0.458543 + 0.888672i \(0.348371\pi\)
\(8\) −2.66137 0.957654i −0.940937 0.338582i
\(9\) 2.39522 0.798408
\(10\) −1.29787 + 0.561724i −0.410423 + 0.177633i
\(11\) 2.16463i 0.652661i 0.945256 + 0.326330i \(0.105812\pi\)
−0.945256 + 0.326330i \(0.894188\pi\)
\(12\) −1.13392 1.06458i −0.327334 0.307319i
\(13\) 3.60762i 1.00057i 0.865860 + 0.500286i \(0.166772\pi\)
−0.865860 + 0.500286i \(0.833228\pi\)
\(14\) 1.36296 + 3.14913i 0.364265 + 0.841640i
\(15\) −0.777674 −0.200795
\(16\) −0.252044 3.99205i −0.0630111 0.998013i
\(17\) −3.85504 −0.934984 −0.467492 0.883997i \(-0.654842\pi\)
−0.467492 + 0.883997i \(0.654842\pi\)
\(18\) 1.34545 + 3.10869i 0.317126 + 0.732725i
\(19\) 1.00000i 0.229416i
\(20\) −1.45809 1.36893i −0.326039 0.306103i
\(21\) 1.88693i 0.411763i
\(22\) −2.80941 + 1.21592i −0.598968 + 0.259236i
\(23\) 5.10533 1.06454 0.532268 0.846576i \(-0.321340\pi\)
0.532268 + 0.846576i \(0.321340\pi\)
\(24\) 0.744743 2.06968i 0.152020 0.422471i
\(25\) −1.00000 −0.200000
\(26\) −4.68222 + 2.02648i −0.918258 + 0.397426i
\(27\) 4.19572i 0.807467i
\(28\) −3.32155 + 3.53788i −0.627715 + 0.668596i
\(29\) 0.0158030i 0.00293454i 0.999999 + 0.00146727i \(0.000467046\pi\)
−0.999999 + 0.00146727i \(0.999533\pi\)
\(30\) −0.436838 1.00932i −0.0797553 0.184276i
\(31\) −9.21232 −1.65458 −0.827291 0.561774i \(-0.810119\pi\)
−0.827291 + 0.561774i \(0.810119\pi\)
\(32\) 5.03958 2.56955i 0.890881 0.454237i
\(33\) −1.68338 −0.293038
\(34\) −2.16547 5.00334i −0.371374 0.858065i
\(35\) 2.42638i 0.410133i
\(36\) −3.27890 + 3.49245i −0.546483 + 0.582075i
\(37\) 11.4598i 1.88397i −0.335650 0.941987i \(-0.608956\pi\)
0.335650 0.941987i \(-0.391044\pi\)
\(38\) −1.29787 + 0.561724i −0.210542 + 0.0911236i
\(39\) −2.80555 −0.449247
\(40\) 0.957654 2.66137i 0.151418 0.420800i
\(41\) 11.4676 1.79094 0.895469 0.445124i \(-0.146840\pi\)
0.895469 + 0.445124i \(0.146840\pi\)
\(42\) −2.44899 + 1.05994i −0.377888 + 0.163552i
\(43\) 5.75007i 0.876878i 0.898761 + 0.438439i \(0.144468\pi\)
−0.898761 + 0.438439i \(0.855532\pi\)
\(44\) −3.15622 2.96323i −0.475818 0.446724i
\(45\) 2.39522i 0.357059i
\(46\) 2.86779 + 6.62606i 0.422832 + 0.976959i
\(47\) −12.1163 −1.76735 −0.883675 0.468101i \(-0.844938\pi\)
−0.883675 + 0.468101i \(0.844938\pi\)
\(48\) 3.10451 0.196008i 0.448098 0.0282913i
\(49\) −1.11267 −0.158953
\(50\) −0.561724 1.29787i −0.0794397 0.183547i
\(51\) 2.99796i 0.419799i
\(52\) −5.26022 4.93858i −0.729462 0.684858i
\(53\) 2.84802i 0.391206i −0.980683 0.195603i \(-0.937334\pi\)
0.980683 0.195603i \(-0.0626664\pi\)
\(54\) −5.44550 + 2.35684i −0.741039 + 0.320725i
\(55\) −2.16463 −0.291879
\(56\) −6.45750 2.32364i −0.862920 0.310509i
\(57\) −0.777674 −0.103005
\(58\) −0.0205102 + 0.00887690i −0.00269312 + 0.00116559i
\(59\) 5.56877i 0.724992i −0.931985 0.362496i \(-0.881925\pi\)
0.931985 0.362496i \(-0.118075\pi\)
\(60\) 1.06458 1.13392i 0.137437 0.146388i
\(61\) 1.31105i 0.167863i 0.996472 + 0.0839313i \(0.0267476\pi\)
−0.996472 + 0.0839313i \(0.973252\pi\)
\(62\) −5.17478 11.9564i −0.657197 1.51846i
\(63\) 5.81173 0.732209
\(64\) 6.16580 + 5.09735i 0.770724 + 0.637169i
\(65\) −3.60762 −0.447470
\(66\) −0.945592 2.18480i −0.116394 0.268931i
\(67\) 4.07518i 0.497863i −0.968521 0.248931i \(-0.919921\pi\)
0.968521 0.248931i \(-0.0800794\pi\)
\(68\) 5.27729 5.62099i 0.639965 0.681645i
\(69\) 3.97028i 0.477966i
\(70\) −3.14913 + 1.36296i −0.376393 + 0.162904i
\(71\) 15.3553 1.82234 0.911172 0.412026i \(-0.135179\pi\)
0.911172 + 0.412026i \(0.135179\pi\)
\(72\) −6.37458 2.29380i −0.751251 0.270326i
\(73\) −7.41737 −0.868137 −0.434069 0.900880i \(-0.642922\pi\)
−0.434069 + 0.900880i \(0.642922\pi\)
\(74\) 14.8733 6.43722i 1.72898 0.748312i
\(75\) 0.777674i 0.0897980i
\(76\) −1.45809 1.36893i −0.167254 0.157027i
\(77\) 5.25222i 0.598546i
\(78\) −1.57594 3.64124i −0.178440 0.412289i
\(79\) 2.07712 0.233694 0.116847 0.993150i \(-0.462721\pi\)
0.116847 + 0.993150i \(0.462721\pi\)
\(80\) 3.99205 0.252044i 0.446325 0.0281794i
\(81\) 3.92277 0.435863
\(82\) 6.44162 + 14.8835i 0.711358 + 1.64360i
\(83\) 16.3734i 1.79721i 0.438754 + 0.898607i \(0.355420\pi\)
−0.438754 + 0.898607i \(0.644580\pi\)
\(84\) −2.75132 2.58309i −0.300193 0.281838i
\(85\) 3.85504i 0.418138i
\(86\) −7.46285 + 3.22995i −0.804739 + 0.348295i
\(87\) −0.0122896 −0.00131758
\(88\) 2.07297 5.76089i 0.220979 0.614112i
\(89\) 14.8972 1.57910 0.789552 0.613684i \(-0.210313\pi\)
0.789552 + 0.613684i \(0.210313\pi\)
\(90\) −3.10869 + 1.34545i −0.327685 + 0.141823i
\(91\) 8.75345i 0.917611i
\(92\) −6.98886 + 7.44403i −0.728639 + 0.776094i
\(93\) 7.16418i 0.742891i
\(94\) −6.80604 15.7254i −0.701989 1.62195i
\(95\) −1.00000 −0.102598
\(96\) 1.99827 + 3.91915i 0.203948 + 0.399997i
\(97\) 14.3523 1.45726 0.728628 0.684909i \(-0.240158\pi\)
0.728628 + 0.684909i \(0.240158\pi\)
\(98\) −0.625014 1.44410i −0.0631359 0.145876i
\(99\) 5.18477i 0.521089i
\(100\) 1.36893 1.45809i 0.136893 0.145809i
\(101\) 12.4726i 1.24107i 0.784177 + 0.620537i \(0.213086\pi\)
−0.784177 + 0.620537i \(0.786914\pi\)
\(102\) 3.89097 1.68403i 0.385263 0.166743i
\(103\) −3.30285 −0.325440 −0.162720 0.986672i \(-0.552027\pi\)
−0.162720 + 0.986672i \(0.552027\pi\)
\(104\) 3.45485 9.60121i 0.338776 0.941476i
\(105\) −1.88693 −0.184146
\(106\) 3.69636 1.59980i 0.359022 0.155386i
\(107\) 12.0211i 1.16213i 0.813859 + 0.581063i \(0.197363\pi\)
−0.813859 + 0.581063i \(0.802637\pi\)
\(108\) −6.11774 5.74367i −0.588680 0.552684i
\(109\) 20.0940i 1.92466i −0.271884 0.962330i \(-0.587647\pi\)
0.271884 0.962330i \(-0.412353\pi\)
\(110\) −1.21592 2.80941i −0.115934 0.267867i
\(111\) 8.91196 0.845886
\(112\) −0.611556 9.68624i −0.0577866 0.915264i
\(113\) 9.76712 0.918813 0.459407 0.888226i \(-0.348062\pi\)
0.459407 + 0.888226i \(0.348062\pi\)
\(114\) −0.436838 1.00932i −0.0409136 0.0945314i
\(115\) 5.10533i 0.476075i
\(116\) −0.0230421 0.0216332i −0.00213941 0.00200859i
\(117\) 8.64105i 0.798865i
\(118\) 7.22754 3.12811i 0.665349 0.287966i
\(119\) −9.35379 −0.857461
\(120\) 2.06968 + 0.744743i 0.188935 + 0.0679854i
\(121\) 6.31438 0.574034
\(122\) −1.70157 + 0.736447i −0.154053 + 0.0666748i
\(123\) 8.91805i 0.804114i
\(124\) 12.6110 13.4324i 1.13251 1.20626i
\(125\) 1.00000i 0.0894427i
\(126\) 3.26458 + 7.54287i 0.290832 + 0.671972i
\(127\) 3.02645 0.268554 0.134277 0.990944i \(-0.457129\pi\)
0.134277 + 0.990944i \(0.457129\pi\)
\(128\) −3.15222 + 10.8657i −0.278620 + 0.960401i
\(129\) −4.47168 −0.393710
\(130\) −2.02648 4.68222i −0.177734 0.410658i
\(131\) 5.81087i 0.507698i −0.967244 0.253849i \(-0.918303\pi\)
0.967244 0.253849i \(-0.0816967\pi\)
\(132\) 2.30443 2.45451i 0.200575 0.213638i
\(133\) 2.42638i 0.210394i
\(134\) 5.28906 2.28913i 0.456905 0.197750i
\(135\) −4.19572 −0.361110
\(136\) 10.2597 + 3.69179i 0.879761 + 0.316569i
\(137\) −3.25503 −0.278096 −0.139048 0.990286i \(-0.544404\pi\)
−0.139048 + 0.990286i \(0.544404\pi\)
\(138\) −5.15291 + 2.23020i −0.438645 + 0.189847i
\(139\) 4.64148i 0.393685i −0.980435 0.196843i \(-0.936931\pi\)
0.980435 0.196843i \(-0.0630688\pi\)
\(140\) −3.53788 3.32155i −0.299005 0.280723i
\(141\) 9.42256i 0.793523i
\(142\) 8.62546 + 19.9292i 0.723832 + 1.67242i
\(143\) −7.80915 −0.653034
\(144\) −0.603702 9.56185i −0.0503085 0.796821i
\(145\) −0.0158030 −0.00131236
\(146\) −4.16651 9.62678i −0.344823 0.796718i
\(147\) 0.865295i 0.0713683i
\(148\) 16.7093 + 15.6876i 1.37350 + 1.28952i
\(149\) 18.3885i 1.50645i −0.657765 0.753223i \(-0.728498\pi\)
0.657765 0.753223i \(-0.271502\pi\)
\(150\) 1.00932 0.436838i 0.0824106 0.0356677i
\(151\) −11.7559 −0.956685 −0.478342 0.878173i \(-0.658762\pi\)
−0.478342 + 0.878173i \(0.658762\pi\)
\(152\) 0.957654 2.66137i 0.0776760 0.215866i
\(153\) −9.23368 −0.746499
\(154\) −6.81670 + 2.95030i −0.549305 + 0.237742i
\(155\) 9.21232i 0.739951i
\(156\) 3.84061 4.09074i 0.307495 0.327521i
\(157\) 14.8964i 1.18887i −0.804145 0.594433i \(-0.797377\pi\)
0.804145 0.594433i \(-0.202623\pi\)
\(158\) 1.16677 + 2.69583i 0.0928230 + 0.214469i
\(159\) 2.21483 0.175648
\(160\) 2.56955 + 5.03958i 0.203141 + 0.398414i
\(161\) 12.3875 0.976271
\(162\) 2.20351 + 5.09124i 0.173124 + 0.400006i
\(163\) 7.57618i 0.593412i 0.954969 + 0.296706i \(0.0958882\pi\)
−0.954969 + 0.296706i \(0.904112\pi\)
\(164\) −15.6984 + 16.7208i −1.22584 + 1.30567i
\(165\) 1.68338i 0.131051i
\(166\) −21.2506 + 9.19733i −1.64936 + 0.713851i
\(167\) 15.0342 1.16338 0.581692 0.813409i \(-0.302391\pi\)
0.581692 + 0.813409i \(0.302391\pi\)
\(168\) 1.80703 5.02183i 0.139415 0.387443i
\(169\) −0.0148907 −0.00114544
\(170\) 5.00334 2.16547i 0.383739 0.166084i
\(171\) 2.39522i 0.183167i
\(172\) −8.38411 7.87146i −0.639283 0.600194i
\(173\) 6.59767i 0.501612i 0.968037 + 0.250806i \(0.0806956\pi\)
−0.968037 + 0.250806i \(0.919304\pi\)
\(174\) −0.00690333 0.0159502i −0.000523340 0.00120918i
\(175\) −2.42638 −0.183417
\(176\) 8.64132 0.545583i 0.651364 0.0411248i
\(177\) 4.33069 0.325514
\(178\) 8.36813 + 19.3347i 0.627218 + 1.44920i
\(179\) 23.0731i 1.72456i 0.506430 + 0.862281i \(0.330965\pi\)
−0.506430 + 0.862281i \(0.669035\pi\)
\(180\) −3.49245 3.27890i −0.260312 0.244395i
\(181\) 11.6959i 0.869346i −0.900588 0.434673i \(-0.856864\pi\)
0.900588 0.434673i \(-0.143136\pi\)
\(182\) −11.3608 + 4.91702i −0.842122 + 0.364474i
\(183\) −1.01957 −0.0753687
\(184\) −13.5872 4.88915i −1.00166 0.360433i
\(185\) 11.4598 0.842539
\(186\) 9.29817 4.02429i 0.681775 0.295075i
\(187\) 8.34473i 0.610227i
\(188\) 16.5865 17.6667i 1.20969 1.28848i
\(189\) 10.1804i 0.740517i
\(190\) −0.561724 1.29787i −0.0407517 0.0941574i
\(191\) −11.5764 −0.837639 −0.418819 0.908070i \(-0.637556\pi\)
−0.418819 + 0.908070i \(0.637556\pi\)
\(192\) −3.96407 + 4.79498i −0.286082 + 0.346048i
\(193\) 0.560028 0.0403117 0.0201559 0.999797i \(-0.493584\pi\)
0.0201559 + 0.999797i \(0.493584\pi\)
\(194\) 8.06203 + 18.6274i 0.578820 + 1.33737i
\(195\) 2.80555i 0.200909i
\(196\) 1.52317 1.62237i 0.108798 0.115884i
\(197\) 1.15117i 0.0820172i 0.999159 + 0.0410086i \(0.0130571\pi\)
−0.999159 + 0.0410086i \(0.986943\pi\)
\(198\) −6.72916 + 2.91241i −0.478221 + 0.206976i
\(199\) 22.4183 1.58919 0.794596 0.607139i \(-0.207683\pi\)
0.794596 + 0.607139i \(0.207683\pi\)
\(200\) 2.66137 + 0.957654i 0.188187 + 0.0677164i
\(201\) 3.16916 0.223535
\(202\) −16.1879 + 7.00618i −1.13898 + 0.492953i
\(203\) 0.0383440i 0.00269122i
\(204\) 4.37129 + 4.10401i 0.306052 + 0.287338i
\(205\) 11.4676i 0.800932i
\(206\) −1.85529 4.28667i −0.129264 0.298667i
\(207\) 12.2284 0.849934
\(208\) 14.4018 0.909279i 0.998584 0.0630471i
\(209\) −2.16463 −0.149731
\(210\) −1.05994 2.44899i −0.0731425 0.168997i
\(211\) 4.33221i 0.298242i −0.988819 0.149121i \(-0.952356\pi\)
0.988819 0.149121i \(-0.0476443\pi\)
\(212\) 4.15267 + 3.89875i 0.285206 + 0.267767i
\(213\) 11.9414i 0.818215i
\(214\) −15.6019 + 6.75255i −1.06652 + 0.461595i
\(215\) −5.75007 −0.392152
\(216\) 4.01805 11.1664i 0.273394 0.759776i
\(217\) −22.3526 −1.51739
\(218\) 26.0795 11.2873i 1.76632 0.764472i
\(219\) 5.76829i 0.389785i
\(220\) 2.96323 3.15622i 0.199781 0.212792i
\(221\) 13.9075i 0.935519i
\(222\) 5.00606 + 11.5666i 0.335985 + 0.776297i
\(223\) −5.66321 −0.379237 −0.189618 0.981858i \(-0.560725\pi\)
−0.189618 + 0.981858i \(0.560725\pi\)
\(224\) 12.2280 6.23471i 0.817015 0.416574i
\(225\) −2.39522 −0.159682
\(226\) 5.48642 + 12.6764i 0.364951 + 0.843225i
\(227\) 6.61434i 0.439009i −0.975611 0.219505i \(-0.929556\pi\)
0.975611 0.219505i \(-0.0704441\pi\)
\(228\) 1.06458 1.13392i 0.0705038 0.0750955i
\(229\) 23.4253i 1.54799i −0.633194 0.773993i \(-0.718257\pi\)
0.633194 0.773993i \(-0.281743\pi\)
\(230\) −6.62606 + 2.86779i −0.436909 + 0.189096i
\(231\) −4.08451 −0.268741
\(232\) 0.0151338 0.0420576i 0.000993581 0.00276121i
\(233\) −1.62715 −0.106598 −0.0532992 0.998579i \(-0.516974\pi\)
−0.0532992 + 0.998579i \(0.516974\pi\)
\(234\) −11.2150 + 4.85388i −0.733144 + 0.317308i
\(235\) 12.1163i 0.790383i
\(236\) 8.11976 + 7.62327i 0.528551 + 0.496233i
\(237\) 1.61532i 0.104926i
\(238\) −5.25425 12.1400i −0.340582 0.786920i
\(239\) −3.05674 −0.197724 −0.0988619 0.995101i \(-0.531520\pi\)
−0.0988619 + 0.995101i \(0.531520\pi\)
\(240\) 0.196008 + 3.10451i 0.0126523 + 0.200396i
\(241\) 19.1609 1.23426 0.617130 0.786861i \(-0.288295\pi\)
0.617130 + 0.786861i \(0.288295\pi\)
\(242\) 3.54693 + 8.19524i 0.228006 + 0.526810i
\(243\) 15.6378i 1.00317i
\(244\) −1.91163 1.79474i −0.122379 0.114896i
\(245\) 1.11267i 0.0710859i
\(246\) −11.5745 + 5.00948i −0.737961 + 0.319393i
\(247\) −3.60762 −0.229547
\(248\) 24.5174 + 8.82222i 1.55686 + 0.560211i
\(249\) −12.7332 −0.806932
\(250\) 1.29787 0.561724i 0.0820845 0.0355265i
\(251\) 7.40799i 0.467588i −0.972286 0.233794i \(-0.924886\pi\)
0.972286 0.233794i \(-0.0751141\pi\)
\(252\) −7.95587 + 8.47401i −0.501172 + 0.533813i
\(253\) 11.0512i 0.694781i
\(254\) 1.70003 + 3.92795i 0.106669 + 0.246461i
\(255\) 2.99796 0.187740
\(256\) −15.8729 + 2.01235i −0.992059 + 0.125772i
\(257\) −22.5334 −1.40560 −0.702799 0.711389i \(-0.748067\pi\)
−0.702799 + 0.711389i \(0.748067\pi\)
\(258\) −2.51185 5.80366i −0.156381 0.361320i
\(259\) 27.8058i 1.72777i
\(260\) 4.93858 5.26022i 0.306278 0.326225i
\(261\) 0.0378516i 0.00234296i
\(262\) 7.54176 3.26411i 0.465931 0.201657i
\(263\) −1.10540 −0.0681620 −0.0340810 0.999419i \(-0.510850\pi\)
−0.0340810 + 0.999419i \(0.510850\pi\)
\(264\) 4.48009 + 1.61209i 0.275730 + 0.0992175i
\(265\) 2.84802 0.174953
\(266\) −3.14913 + 1.36296i −0.193085 + 0.0835682i
\(267\) 11.5852i 0.709002i
\(268\) 5.94198 + 5.57865i 0.362964 + 0.340770i
\(269\) 19.9527i 1.21654i −0.793732 0.608268i \(-0.791865\pi\)
0.793732 0.608268i \(-0.208135\pi\)
\(270\) −2.35684 5.44550i −0.143433 0.331403i
\(271\) 1.05787 0.0642609 0.0321304 0.999484i \(-0.489771\pi\)
0.0321304 + 0.999484i \(0.489771\pi\)
\(272\) 0.971640 + 15.3895i 0.0589143 + 0.933126i
\(273\) −6.80733 −0.411998
\(274\) −1.82843 4.22460i −0.110459 0.255217i
\(275\) 2.16463i 0.130532i
\(276\) −5.78903 5.43505i −0.348458 0.327152i
\(277\) 1.69939i 0.102107i −0.998696 0.0510534i \(-0.983742\pi\)
0.998696 0.0510534i \(-0.0162579\pi\)
\(278\) 6.02404 2.60723i 0.361298 0.156371i
\(279\) −22.0656 −1.32103
\(280\) 2.32364 6.45750i 0.138864 0.385910i
\(281\) 20.8335 1.24282 0.621411 0.783485i \(-0.286560\pi\)
0.621411 + 0.783485i \(0.286560\pi\)
\(282\) 12.2293 5.29288i 0.728242 0.315186i
\(283\) 13.2328i 0.786607i 0.919409 + 0.393303i \(0.128668\pi\)
−0.919409 + 0.393303i \(0.871332\pi\)
\(284\) −21.0204 + 22.3894i −1.24733 + 1.32857i
\(285\) 0.777674i 0.0460654i
\(286\) −4.38659 10.1353i −0.259384 0.599311i
\(287\) 27.8248 1.64244
\(288\) 12.0709 6.15465i 0.711286 0.362666i
\(289\) −2.13868 −0.125805
\(290\) −0.00887690 0.0205102i −0.000521269 0.00120440i
\(291\) 11.1614i 0.654294i
\(292\) 10.1539 10.8152i 0.594211 0.632910i
\(293\) 27.0040i 1.57759i 0.614658 + 0.788794i \(0.289294\pi\)
−0.614658 + 0.788794i \(0.710706\pi\)
\(294\) 1.12304 0.486057i 0.0654971 0.0283474i
\(295\) 5.56877 0.324226
\(296\) −10.9745 + 30.4987i −0.637879 + 1.77270i
\(297\) −9.08219 −0.527002
\(298\) 23.8659 10.3293i 1.38251 0.598358i
\(299\) 18.4181i 1.06515i
\(300\) 1.13392 + 1.06458i 0.0654667 + 0.0614638i
\(301\) 13.9519i 0.804172i
\(302\) −6.60359 15.2577i −0.379994 0.877981i
\(303\) −9.69965 −0.557231
\(304\) 3.99205 0.252044i 0.228960 0.0144557i
\(305\) −1.31105 −0.0750705
\(306\) −5.18677 11.9841i −0.296508 0.685086i
\(307\) 16.1303i 0.920604i −0.887762 0.460302i \(-0.847741\pi\)
0.887762 0.460302i \(-0.152259\pi\)
\(308\) −7.65820 7.18994i −0.436367 0.409685i
\(309\) 2.56854i 0.146119i
\(310\) 11.9564 5.17478i 0.679078 0.293908i
\(311\) 5.05986 0.286918 0.143459 0.989656i \(-0.454177\pi\)
0.143459 + 0.989656i \(0.454177\pi\)
\(312\) 7.46661 + 2.68675i 0.422713 + 0.152107i
\(313\) −25.9367 −1.46603 −0.733015 0.680212i \(-0.761888\pi\)
−0.733015 + 0.680212i \(0.761888\pi\)
\(314\) 19.3337 8.36769i 1.09106 0.472216i
\(315\) 5.81173i 0.327454i
\(316\) −2.84344 + 3.02862i −0.159956 + 0.170373i
\(317\) 12.6961i 0.713082i −0.934280 0.356541i \(-0.883956\pi\)
0.934280 0.356541i \(-0.116044\pi\)
\(318\) 1.24412 + 2.87456i 0.0697670 + 0.161198i
\(319\) −0.0342076 −0.00191526
\(320\) −5.09735 + 6.16580i −0.284950 + 0.344678i
\(321\) −9.34851 −0.521783
\(322\) 6.95835 + 16.0774i 0.387773 + 0.895956i
\(323\) 3.85504i 0.214500i
\(324\) −5.37000 + 5.71974i −0.298334 + 0.317763i
\(325\) 3.60762i 0.200115i
\(326\) −9.83290 + 4.25572i −0.544594 + 0.235703i
\(327\) 15.6266 0.864154
\(328\) −30.5195 10.9820i −1.68516 0.606379i
\(329\) −29.3989 −1.62081
\(330\) 2.18480 0.945592i 0.120269 0.0520531i
\(331\) 25.6782i 1.41140i −0.708509 0.705701i \(-0.750632\pi\)
0.708509 0.705701i \(-0.249368\pi\)
\(332\) −23.8739 22.4141i −1.31025 1.23013i
\(333\) 27.4487i 1.50418i
\(334\) 8.44508 + 19.5125i 0.462094 + 1.06768i
\(335\) 4.07518 0.222651
\(336\) 7.53274 0.475591i 0.410944 0.0259456i
\(337\) −3.39684 −0.185038 −0.0925189 0.995711i \(-0.529492\pi\)
−0.0925189 + 0.995711i \(0.529492\pi\)
\(338\) −0.00836448 0.0193263i −0.000454968 0.00105121i
\(339\) 7.59563i 0.412538i
\(340\) 5.62099 + 5.27729i 0.304841 + 0.286201i
\(341\) 19.9413i 1.07988i
\(342\) −3.10869 + 1.34545i −0.168099 + 0.0727538i
\(343\) −19.6844 −1.06286
\(344\) 5.50658 15.3031i 0.296895 0.825087i
\(345\) −3.97028 −0.213753
\(346\) −8.56292 + 3.70607i −0.460345 + 0.199239i
\(347\) 25.1646i 1.35091i −0.737402 0.675454i \(-0.763948\pi\)
0.737402 0.675454i \(-0.236052\pi\)
\(348\) 0.0168236 0.0179193i 0.000901838 0.000960573i
\(349\) 1.81121i 0.0969521i 0.998824 + 0.0484760i \(0.0154365\pi\)
−0.998824 + 0.0484760i \(0.984564\pi\)
\(350\) −1.36296 3.14913i −0.0728531 0.168328i
\(351\) −15.1366 −0.807930
\(352\) 5.56213 + 10.9088i 0.296462 + 0.581443i
\(353\) 21.4490 1.14161 0.570806 0.821085i \(-0.306631\pi\)
0.570806 + 0.821085i \(0.306631\pi\)
\(354\) 2.43265 + 5.62067i 0.129294 + 0.298735i
\(355\) 15.3553i 0.814977i
\(356\) −20.3933 + 21.7215i −1.08084 + 1.15124i
\(357\) 7.27420i 0.384992i
\(358\) −29.9458 + 12.9607i −1.58269 + 0.684994i
\(359\) 15.2626 0.805527 0.402763 0.915304i \(-0.368050\pi\)
0.402763 + 0.915304i \(0.368050\pi\)
\(360\) 2.29380 6.37458i 0.120894 0.335970i
\(361\) −1.00000 −0.0526316
\(362\) 15.1797 6.56984i 0.797827 0.345303i
\(363\) 4.91052i 0.257736i
\(364\) −12.7633 11.9829i −0.668979 0.628074i
\(365\) 7.41737i 0.388243i
\(366\) −0.572716 1.32327i −0.0299363 0.0691683i
\(367\) −35.0414 −1.82915 −0.914573 0.404420i \(-0.867473\pi\)
−0.914573 + 0.404420i \(0.867473\pi\)
\(368\) −1.28677 20.3808i −0.0670775 1.06242i
\(369\) 27.4675 1.42990
\(370\) 6.43722 + 14.8733i 0.334655 + 0.773225i
\(371\) 6.91039i 0.358770i
\(372\) 10.4460 + 9.80728i 0.541600 + 0.508484i
\(373\) 2.83276i 0.146675i 0.997307 + 0.0733375i \(0.0233650\pi\)
−0.997307 + 0.0733375i \(0.976635\pi\)
\(374\) 10.8304 4.68743i 0.560026 0.242381i
\(375\) 0.777674 0.0401589
\(376\) 32.2461 + 11.6033i 1.66296 + 0.598393i
\(377\) −0.0570110 −0.00293622
\(378\) −13.2129 + 5.71859i −0.679597 + 0.294132i
\(379\) 17.8185i 0.915274i −0.889139 0.457637i \(-0.848696\pi\)
0.889139 0.457637i \(-0.151304\pi\)
\(380\) 1.36893 1.45809i 0.0702248 0.0747984i
\(381\) 2.35359i 0.120578i
\(382\) −6.50274 15.0247i −0.332709 0.768728i
\(383\) 12.8717 0.657714 0.328857 0.944380i \(-0.393337\pi\)
0.328857 + 0.944380i \(0.393337\pi\)
\(384\) −8.44997 2.45140i −0.431211 0.125098i
\(385\) −5.25222 −0.267678
\(386\) 0.314581 + 0.726844i 0.0160118 + 0.0369954i
\(387\) 13.7727i 0.700106i
\(388\) −19.6474 + 20.9269i −0.997444 + 1.06240i
\(389\) 18.9373i 0.960157i 0.877225 + 0.480079i \(0.159392\pi\)
−0.877225 + 0.480079i \(0.840608\pi\)
\(390\) 3.64124 1.57594i 0.184381 0.0798010i
\(391\) −19.6813 −0.995324
\(392\) 2.96123 + 1.06555i 0.149565 + 0.0538186i
\(393\) 4.51896 0.227952
\(394\) −1.49406 + 0.646637i −0.0752699 + 0.0325771i
\(395\) 2.07712i 0.104511i
\(396\) −7.55986 7.09761i −0.379897 0.356668i
\(397\) 19.5608i 0.981728i 0.871236 + 0.490864i \(0.163319\pi\)
−0.871236 + 0.490864i \(0.836681\pi\)
\(398\) 12.5929 + 29.0960i 0.631224 + 1.45845i
\(399\) −1.88693 −0.0944648
\(400\) 0.252044 + 3.99205i 0.0126022 + 0.199603i
\(401\) −23.5167 −1.17437 −0.587185 0.809453i \(-0.699764\pi\)
−0.587185 + 0.809453i \(0.699764\pi\)
\(402\) 1.78019 + 4.11316i 0.0887880 + 0.205146i
\(403\) 33.2345i 1.65553i
\(404\) −18.1862 17.0742i −0.904799 0.849474i
\(405\) 3.92277i 0.194924i
\(406\) −0.0497656 + 0.0215387i −0.00246982 + 0.00106895i
\(407\) 24.8062 1.22960
\(408\) −2.87101 + 7.97869i −0.142136 + 0.395004i
\(409\) −34.4938 −1.70561 −0.852803 0.522233i \(-0.825099\pi\)
−0.852803 + 0.522233i \(0.825099\pi\)
\(410\) −14.8835 + 6.44162i −0.735041 + 0.318129i
\(411\) 2.53135i 0.124862i
\(412\) 4.52138 4.81585i 0.222752 0.237260i
\(413\) 13.5120i 0.664880i
\(414\) 6.86899 + 15.8709i 0.337592 + 0.780012i
\(415\) −16.3734 −0.803739
\(416\) 9.26995 + 18.1809i 0.454497 + 0.891391i
\(417\) 3.60956 0.176761
\(418\) −1.21592 2.80941i −0.0594728 0.137413i
\(419\) 1.02786i 0.0502144i 0.999685 + 0.0251072i \(0.00799272\pi\)
−0.999685 + 0.0251072i \(0.992007\pi\)
\(420\) 2.58309 2.75132i 0.126042 0.134250i
\(421\) 0.713127i 0.0347557i 0.999849 + 0.0173778i \(0.00553182\pi\)
−0.999849 + 0.0173778i \(0.994468\pi\)
\(422\) 5.62265 2.43350i 0.273706 0.118461i
\(423\) −29.0213 −1.41107
\(424\) −2.72742 + 7.57964i −0.132455 + 0.368100i
\(425\) 3.85504 0.186997
\(426\) −15.4984 + 6.70779i −0.750902 + 0.324994i
\(427\) 3.18111i 0.153944i
\(428\) −17.5279 16.4561i −0.847241 0.795436i
\(429\) 6.07298i 0.293206i
\(430\) −3.22995 7.46285i −0.155762 0.359890i
\(431\) −10.1758 −0.490150 −0.245075 0.969504i \(-0.578813\pi\)
−0.245075 + 0.969504i \(0.578813\pi\)
\(432\) 16.7495 1.05751i 0.805863 0.0508794i
\(433\) −4.69815 −0.225779 −0.112889 0.993608i \(-0.536011\pi\)
−0.112889 + 0.993608i \(0.536011\pi\)
\(434\) −12.5560 29.0108i −0.602707 1.39256i
\(435\) 0.0122896i 0.000589239i
\(436\) 29.2989 + 27.5074i 1.40316 + 1.31737i
\(437\) 5.10533i 0.244221i
\(438\) 7.48649 3.24019i 0.357719 0.154822i
\(439\) −2.53473 −0.120976 −0.0604879 0.998169i \(-0.519266\pi\)
−0.0604879 + 0.998169i \(0.519266\pi\)
\(440\) 5.76089 + 2.07297i 0.274639 + 0.0988249i
\(441\) −2.66510 −0.126909
\(442\) 18.0501 7.81217i 0.858557 0.371587i
\(443\) 8.91941i 0.423774i −0.977294 0.211887i \(-0.932039\pi\)
0.977294 0.211887i \(-0.0679609\pi\)
\(444\) −12.1999 + 12.9944i −0.578980 + 0.616688i
\(445\) 14.8972i 0.706197i
\(446\) −3.18116 7.35011i −0.150632 0.348038i
\(447\) 14.3003 0.676379
\(448\) 14.9606 + 12.3681i 0.706821 + 0.584338i
\(449\) −4.64897 −0.219398 −0.109699 0.993965i \(-0.534989\pi\)
−0.109699 + 0.993965i \(0.534989\pi\)
\(450\) −1.34545 3.10869i −0.0634253 0.146545i
\(451\) 24.8231i 1.16887i
\(452\) −13.3705 + 14.2413i −0.628897 + 0.669855i
\(453\) 9.14228i 0.429542i
\(454\) 8.58455 3.71543i 0.402893 0.174374i
\(455\) −8.75345 −0.410368
\(456\) 2.06968 + 0.744743i 0.0969216 + 0.0348758i
\(457\) −15.0176 −0.702495 −0.351248 0.936283i \(-0.614242\pi\)
−0.351248 + 0.936283i \(0.614242\pi\)
\(458\) 30.4030 13.1585i 1.42064 0.614858i
\(459\) 16.1747i 0.754969i
\(460\) −7.44403 6.98886i −0.347080 0.325857i
\(461\) 5.80968i 0.270584i −0.990806 0.135292i \(-0.956803\pi\)
0.990806 0.135292i \(-0.0431972\pi\)
\(462\) −2.29437 5.30117i −0.106744 0.246633i
\(463\) −40.5335 −1.88375 −0.941875 0.335964i \(-0.890938\pi\)
−0.941875 + 0.335964i \(0.890938\pi\)
\(464\) 0.0630862 0.00398305i 0.00292871 0.000184908i
\(465\) 7.16418 0.332231
\(466\) −0.914010 2.11183i −0.0423407 0.0978288i
\(467\) 11.4858i 0.531501i −0.964042 0.265751i \(-0.914380\pi\)
0.964042 0.265751i \(-0.0856198\pi\)
\(468\) −12.5994 11.8290i −0.582408 0.546796i
\(469\) 9.88795i 0.456583i
\(470\) 15.7254 6.80604i 0.725360 0.313939i
\(471\) 11.5846 0.533789
\(472\) −5.33296 + 14.8206i −0.245469 + 0.682172i
\(473\) −12.4468 −0.572304
\(474\) −2.09648 + 0.907364i −0.0962944 + 0.0416766i
\(475\) 1.00000i 0.0458831i
\(476\) 12.8047 13.6387i 0.586903 0.625127i
\(477\) 6.82165i 0.312342i
\(478\) −1.71704 3.96725i −0.0785357 0.181458i
\(479\) 12.0504 0.550595 0.275298 0.961359i \(-0.411224\pi\)
0.275298 + 0.961359i \(0.411224\pi\)
\(480\) −3.91915 + 1.99827i −0.178884 + 0.0912082i
\(481\) 41.3424 1.88505
\(482\) 10.7631 + 24.8683i 0.490247 + 1.13272i
\(483\) 9.63343i 0.438336i
\(484\) −8.64396 + 9.20692i −0.392907 + 0.418496i
\(485\) 14.3523i 0.651705i
\(486\) −20.2958 + 8.78412i −0.920638 + 0.398456i
\(487\) 1.48578 0.0673269 0.0336635 0.999433i \(-0.489283\pi\)
0.0336635 + 0.999433i \(0.489283\pi\)
\(488\) 1.25553 3.48919i 0.0568353 0.157948i
\(489\) −5.89180 −0.266436
\(490\) 1.44410 0.625014i 0.0652379 0.0282352i
\(491\) 29.6936i 1.34005i −0.742337 0.670027i \(-0.766283\pi\)
0.742337 0.670027i \(-0.233717\pi\)
\(492\) −13.0033 12.2082i −0.586234 0.550389i
\(493\) 0.0609210i 0.00274375i
\(494\) −2.02648 4.68222i −0.0911758 0.210663i
\(495\) −5.18477 −0.233038
\(496\) 2.32191 + 36.7761i 0.104257 + 1.65129i
\(497\) 37.2579 1.67125
\(498\) −7.15252 16.5260i −0.320512 0.740548i
\(499\) 31.4369i 1.40731i 0.710542 + 0.703654i \(0.248450\pi\)
−0.710542 + 0.703654i \(0.751550\pi\)
\(500\) 1.45809 + 1.36893i 0.0652077 + 0.0612206i
\(501\) 11.6917i 0.522348i
\(502\) 9.61460 4.16124i 0.429121 0.185725i
\(503\) −1.94409 −0.0866828 −0.0433414 0.999060i \(-0.513800\pi\)
−0.0433414 + 0.999060i \(0.513800\pi\)
\(504\) −15.4672 5.56563i −0.688962 0.247913i
\(505\) −12.4726 −0.555026
\(506\) −14.3430 + 6.20770i −0.637623 + 0.275966i
\(507\) 0.0115801i 0.000514292i
\(508\) −4.14301 + 4.41284i −0.183817 + 0.195788i
\(509\) 24.4620i 1.08426i 0.840296 + 0.542129i \(0.182381\pi\)
−0.840296 + 0.542129i \(0.817619\pi\)
\(510\) 1.68403 + 3.89097i 0.0745699 + 0.172295i
\(511\) −17.9974 −0.796157
\(512\) −11.5280 19.4706i −0.509469 0.860489i
\(513\) −4.19572 −0.185246
\(514\) −12.6576 29.2455i −0.558301 1.28996i
\(515\) 3.30285i 0.145541i
\(516\) 6.12143 6.52011i 0.269481 0.287032i
\(517\) 26.2274i 1.15348i
\(518\) 36.0883 15.6192i 1.58563 0.686266i
\(519\) −5.13084 −0.225219
\(520\) 9.60121 + 3.45485i 0.421041 + 0.151505i
\(521\) 2.91231 0.127591 0.0637954 0.997963i \(-0.479679\pi\)
0.0637954 + 0.997963i \(0.479679\pi\)
\(522\) −0.0491265 + 0.0212622i −0.00215021 + 0.000930619i
\(523\) 17.9564i 0.785178i 0.919714 + 0.392589i \(0.128420\pi\)
−0.919714 + 0.392589i \(0.871580\pi\)
\(524\) 8.47277 + 7.95470i 0.370135 + 0.347503i
\(525\) 1.88693i 0.0823525i
\(526\) −0.620930 1.43467i −0.0270738 0.0625545i
\(527\) 35.5138 1.54701
\(528\) 0.424285 + 6.72013i 0.0184646 + 0.292456i
\(529\) 3.06444 0.133236
\(530\) 1.59980 + 3.69636i 0.0694909 + 0.160560i
\(531\) 13.3384i 0.578839i
\(532\) −3.53788 3.32155i −0.153387 0.144008i
\(533\) 41.3707i 1.79196i
\(534\) −15.0361 + 6.50768i −0.650675 + 0.281615i
\(535\) −12.0211 −0.519718
\(536\) −3.90262 + 10.8456i −0.168567 + 0.468457i
\(537\) −17.9433 −0.774312
\(538\) 25.8960 11.2079i 1.11645 0.483206i
\(539\) 2.40852i 0.103742i
\(540\) 5.74367 6.11774i 0.247168 0.263265i
\(541\) 4.16184i 0.178931i −0.995990 0.0894656i \(-0.971484\pi\)
0.995990 0.0894656i \(-0.0285159\pi\)
\(542\) 0.594229 + 1.37297i 0.0255243 + 0.0589743i
\(543\) 9.09556 0.390328
\(544\) −19.4278 + 9.90571i −0.832960 + 0.424704i
\(545\) 20.0940 0.860734
\(546\) −3.82384 8.83503i −0.163645 0.378104i
\(547\) 28.8705i 1.23442i 0.786800 + 0.617208i \(0.211736\pi\)
−0.786800 + 0.617208i \(0.788264\pi\)
\(548\) 4.45591 4.74612i 0.190347 0.202744i
\(549\) 3.14026i 0.134023i
\(550\) 2.80941 1.21592i 0.119794 0.0518472i
\(551\) −0.0158030 −0.000673229
\(552\) 3.80216 10.5664i 0.161831 0.449736i
\(553\) 5.03988 0.214318
\(554\) 2.20559 0.954590i 0.0937067 0.0405566i
\(555\) 8.91196i 0.378292i
\(556\) 6.76769 + 6.35388i 0.287014 + 0.269464i
\(557\) 29.9532i 1.26916i 0.772858 + 0.634579i \(0.218826\pi\)
−0.772858 + 0.634579i \(0.781174\pi\)
\(558\) −12.3947 28.6382i −0.524712 1.21235i
\(559\) −20.7441 −0.877380
\(560\) 9.68624 0.611556i 0.409318 0.0258429i
\(561\) 6.48948 0.273986
\(562\) 11.7027 + 27.0392i 0.493647 + 1.14058i
\(563\) 15.3052i 0.645037i −0.946563 0.322518i \(-0.895471\pi\)
0.946563 0.322518i \(-0.104529\pi\)
\(564\) 13.7389 + 12.8989i 0.578513 + 0.543140i
\(565\) 9.76712i 0.410906i
\(566\) −17.1744 + 7.43316i −0.721895 + 0.312439i
\(567\) 9.51813 0.399724
\(568\) −40.8663 14.7051i −1.71471 0.617013i
\(569\) −26.2404 −1.10005 −0.550027 0.835147i \(-0.685383\pi\)
−0.550027 + 0.835147i \(0.685383\pi\)
\(570\) 1.00932 0.436838i 0.0422757 0.0182971i
\(571\) 19.6428i 0.822024i −0.911630 0.411012i \(-0.865175\pi\)
0.911630 0.411012i \(-0.134825\pi\)
\(572\) 10.6902 11.3864i 0.446980 0.476091i
\(573\) 9.00266i 0.376092i
\(574\) 15.6298 + 36.1129i 0.652377 + 1.50732i
\(575\) −5.10533 −0.212907
\(576\) 14.7685 + 12.2093i 0.615352 + 0.508720i
\(577\) 26.8816 1.11910 0.559548 0.828798i \(-0.310975\pi\)
0.559548 + 0.828798i \(0.310975\pi\)
\(578\) −1.20135 2.77573i −0.0499695 0.115455i
\(579\) 0.435519i 0.0180996i
\(580\) 0.0216332 0.0230421i 0.000898270 0.000956772i
\(581\) 39.7281i 1.64820i
\(582\) −14.4861 + 6.26963i −0.600467 + 0.259885i
\(583\) 6.16491 0.255325
\(584\) 19.7404 + 7.10328i 0.816862 + 0.293936i
\(585\) −8.64105 −0.357263
\(586\) −35.0476 + 15.1688i −1.44780 + 0.626616i
\(587\) 4.35767i 0.179860i 0.995948 + 0.0899302i \(0.0286644\pi\)
−0.995948 + 0.0899302i \(0.971336\pi\)
\(588\) 1.26168 + 1.18453i 0.0520307 + 0.0488492i
\(589\) 9.21232i 0.379587i
\(590\) 3.12811 + 7.22754i 0.128782 + 0.297553i
\(591\) −0.895232 −0.0368249
\(592\) −45.7480 + 2.88837i −1.88023 + 0.118711i
\(593\) −3.80956 −0.156440 −0.0782200 0.996936i \(-0.524924\pi\)
−0.0782200 + 0.996936i \(0.524924\pi\)
\(594\) −5.10168 11.7875i −0.209325 0.483647i
\(595\) 9.35379i 0.383468i
\(596\) 26.8121 + 25.1726i 1.09827 + 1.03111i
\(597\) 17.4341i 0.713531i
\(598\) −23.9043 + 10.3459i −0.977519 + 0.423074i
\(599\) 5.33523 0.217992 0.108996 0.994042i \(-0.465236\pi\)
0.108996 + 0.994042i \(0.465236\pi\)
\(600\) −0.744743 + 2.06968i −0.0304040 + 0.0844943i
\(601\) 9.94251 0.405563 0.202782 0.979224i \(-0.435002\pi\)
0.202782 + 0.979224i \(0.435002\pi\)
\(602\) −18.1077 + 7.83710i −0.738015 + 0.319416i
\(603\) 9.76097i 0.397497i
\(604\) 16.0931 17.1412i 0.654819 0.697465i
\(605\) 6.31438i 0.256716i
\(606\) −5.44852 12.5889i −0.221331 0.511389i
\(607\) 28.5500 1.15881 0.579405 0.815040i \(-0.303285\pi\)
0.579405 + 0.815040i \(0.303285\pi\)
\(608\) 2.56955 + 5.03958i 0.104209 + 0.204382i
\(609\) −0.0298191 −0.00120833
\(610\) −0.736447 1.70157i −0.0298179 0.0688946i
\(611\) 43.7111i 1.76836i
\(612\) 12.6403 13.4635i 0.510953 0.544230i
\(613\) 31.2407i 1.26180i 0.775864 + 0.630900i \(0.217314\pi\)
−0.775864 + 0.630900i \(0.782686\pi\)
\(614\) 20.9350 9.06076i 0.844869 0.365663i
\(615\) −8.91805 −0.359611
\(616\) 5.02981 13.9781i 0.202657 0.563194i
\(617\) 16.1416 0.649837 0.324918 0.945742i \(-0.394663\pi\)
0.324918 + 0.945742i \(0.394663\pi\)
\(618\) 3.33363 1.44281i 0.134098 0.0580383i
\(619\) 9.62836i 0.386997i 0.981101 + 0.193498i \(0.0619834\pi\)
−0.981101 + 0.193498i \(0.938017\pi\)
\(620\) 13.4324 + 12.6110i 0.539457 + 0.506472i
\(621\) 21.4206i 0.859578i
\(622\) 2.84224 + 6.56704i 0.113964 + 0.263314i
\(623\) 36.1464 1.44817
\(624\) 0.707122 + 11.1999i 0.0283075 + 0.448355i
\(625\) 1.00000 0.0400000
\(626\) −14.5693 33.6625i −0.582305 1.34542i
\(627\) 1.68338i 0.0672276i
\(628\) 21.7203 + 20.3922i 0.866736 + 0.813739i
\(629\) 44.1778i 1.76149i
\(630\) −7.54287 + 3.26458i −0.300515 + 0.130064i
\(631\) 11.8631 0.472261 0.236131 0.971721i \(-0.424121\pi\)
0.236131 + 0.971721i \(0.424121\pi\)
\(632\) −5.52799 1.98916i −0.219891 0.0791246i
\(633\) 3.36905 0.133908
\(634\) 16.4778 7.13168i 0.654419 0.283235i
\(635\) 3.02645i 0.120101i
\(636\) −3.03196 + 3.22942i −0.120225 + 0.128055i
\(637\) 4.01409i 0.159044i
\(638\) −0.0192152 0.0443970i −0.000760737 0.00175769i
\(639\) 36.7795 1.45497
\(640\) −10.8657 3.15222i −0.429505 0.124603i
\(641\) 11.6662 0.460788 0.230394 0.973097i \(-0.425998\pi\)
0.230394 + 0.973097i \(0.425998\pi\)
\(642\) −5.25128 12.1332i −0.207251 0.478857i
\(643\) 9.82447i 0.387439i −0.981057 0.193720i \(-0.937945\pi\)
0.981057 0.193720i \(-0.0620552\pi\)
\(644\) −16.9576 + 18.0621i −0.668225 + 0.711745i
\(645\) 4.47168i 0.176072i
\(646\) 5.00334 2.16547i 0.196854 0.0851991i
\(647\) −18.3731 −0.722319 −0.361160 0.932504i \(-0.617619\pi\)
−0.361160 + 0.932504i \(0.617619\pi\)
\(648\) −10.4399 3.75665i −0.410119 0.147575i
\(649\) 12.0543 0.473174
\(650\) 4.68222 2.02648i 0.183652 0.0794852i
\(651\) 17.3830i 0.681295i
\(652\) −11.0467 10.3713i −0.432624 0.406171i
\(653\) 2.23290i 0.0873803i 0.999045 + 0.0436901i \(0.0139114\pi\)
−0.999045 + 0.0436901i \(0.986089\pi\)
\(654\) 8.77784 + 20.2813i 0.343241 + 0.793062i
\(655\) 5.81087 0.227050
\(656\) −2.89034 45.7792i −0.112849 1.78738i
\(657\) −17.7663 −0.693128
\(658\) −16.5140 38.1559i −0.643784 1.48747i
\(659\) 40.7083i 1.58577i −0.609370 0.792886i \(-0.708578\pi\)
0.609370 0.792886i \(-0.291422\pi\)
\(660\) 2.45451 + 2.30443i 0.0955417 + 0.0896998i
\(661\) 29.6681i 1.15395i −0.816760 0.576977i \(-0.804232\pi\)
0.816760 0.576977i \(-0.195768\pi\)
\(662\) 33.3270 14.4241i 1.29529 0.560607i
\(663\) 10.8155 0.420039
\(664\) 15.6801 43.5757i 0.608505 1.69107i
\(665\) −2.42638 −0.0940911
\(666\) 35.6248 15.4186i 1.38043 0.597458i
\(667\) 0.0806794i 0.00312392i
\(668\) −20.5809 + 21.9212i −0.796297 + 0.848158i
\(669\) 4.40413i 0.170274i
\(670\) 2.28913 + 5.28906i 0.0884366 + 0.204334i
\(671\) −2.83794 −0.109557
\(672\) 4.84857 + 9.50936i 0.187038 + 0.366832i
\(673\) −0.592899 −0.0228546 −0.0114273 0.999935i \(-0.503637\pi\)
−0.0114273 + 0.999935i \(0.503637\pi\)
\(674\) −1.90809 4.40866i −0.0734968 0.169815i
\(675\) 4.19572i 0.161493i
\(676\) 0.0203844 0.0217120i 0.000784017 0.000835078i
\(677\) 36.2140i 1.39182i −0.718131 0.695908i \(-0.755002\pi\)
0.718131 0.695908i \(-0.244998\pi\)
\(678\) −9.85814 + 4.26665i −0.378600 + 0.163860i
\(679\) 34.8242 1.33643
\(680\) −3.69179 + 10.2597i −0.141574 + 0.393441i
\(681\) 5.14380 0.197111
\(682\) 25.8812 11.2015i 0.991041 0.428927i
\(683\) 10.4184i 0.398649i −0.979934 0.199324i \(-0.936125\pi\)
0.979934 0.199324i \(-0.0638748\pi\)
\(684\) −3.49245 3.27890i −0.133537 0.125372i
\(685\) 3.25503i 0.124368i
\(686\) −11.0572 25.5478i −0.422166 0.975421i
\(687\) 18.2172 0.695030
\(688\) 22.9546 1.44927i 0.875135 0.0552530i
\(689\) 10.2746 0.391430
\(690\) −2.23020 5.15291i −0.0849024 0.196168i
\(691\) 27.3353i 1.03988i 0.854201 + 0.519942i \(0.174047\pi\)
−0.854201 + 0.519942i \(0.825953\pi\)
\(692\) −9.61999 9.03177i −0.365697 0.343336i
\(693\) 12.5802i 0.477884i
\(694\) 32.6604 14.1356i 1.23977 0.536579i
\(695\) 4.64148 0.176061
\(696\) 0.0327071 + 0.0117691i 0.00123976 + 0.000446108i
\(697\) −44.2080 −1.67450
\(698\) −2.35072 + 1.01740i −0.0889761 + 0.0385092i
\(699\) 1.26539i 0.0478616i
\(700\) 3.32155 3.53788i 0.125543 0.133719i
\(701\) 9.48933i 0.358407i 0.983812 + 0.179203i \(0.0573520\pi\)
−0.983812 + 0.179203i \(0.942648\pi\)
\(702\) −8.50256 19.6453i −0.320909 0.741464i
\(703\) 11.4598 0.432213
\(704\) −11.0339 + 13.3467i −0.415855 + 0.503022i
\(705\) 9.42256 0.354874
\(706\) 12.0484 + 27.8380i 0.453447 + 1.04770i
\(707\) 30.2634i 1.13817i
\(708\) −5.92842 + 6.31452i −0.222804 + 0.237314i
\(709\) 39.4572i 1.48185i 0.671590 + 0.740923i \(0.265612\pi\)
−0.671590 + 0.740923i \(0.734388\pi\)
\(710\) −19.9292 + 8.62546i −0.747931 + 0.323708i
\(711\) 4.97516 0.186583
\(712\) −39.6471 14.2664i −1.48584 0.534656i
\(713\) −47.0320 −1.76136
\(714\) 9.44097 4.08609i 0.353319 0.152918i
\(715\) 7.80915i 0.292046i
\(716\) −33.6426 31.5855i −1.25728 1.18041i
\(717\) 2.37714i 0.0887761i
\(718\) 8.57334 + 19.8088i 0.319954 + 0.739258i
\(719\) 30.5190 1.13817 0.569084 0.822279i \(-0.307298\pi\)
0.569084 + 0.822279i \(0.307298\pi\)
\(720\) 9.56185 0.603702i 0.356349 0.0224987i
\(721\) −8.01398 −0.298456
\(722\) −0.561724 1.29787i −0.0209052 0.0483017i
\(723\) 14.9009i 0.554171i
\(724\) 17.0536 + 16.0108i 0.633792 + 0.595038i
\(725\) 0.0158030i 0.000586907i
\(726\) −6.37322 + 2.75836i −0.236532 + 0.102372i
\(727\) −21.2523 −0.788204 −0.394102 0.919067i \(-0.628944\pi\)
−0.394102 + 0.919067i \(0.628944\pi\)
\(728\) 8.38278 23.2962i 0.310687 0.863414i
\(729\) −0.392816 −0.0145487
\(730\) 9.62678 4.16651i 0.356303 0.154209i
\(731\) 22.1667i 0.819867i
\(732\) 1.39572 1.48662i 0.0515873 0.0549471i
\(733\) 19.8239i 0.732212i −0.930573 0.366106i \(-0.880691\pi\)
0.930573 0.366106i \(-0.119309\pi\)
\(734\) −19.6836 45.4792i −0.726534 1.67867i
\(735\) 0.865295 0.0319169
\(736\) 25.7288 13.1184i 0.948375 0.483551i
\(737\) 8.82126 0.324935
\(738\) 15.4291 + 35.6492i 0.567954 + 1.31226i
\(739\) 31.8107i 1.17018i 0.810969 + 0.585089i \(0.198940\pi\)
−0.810969 + 0.585089i \(0.801060\pi\)
\(740\) −15.6876 + 16.7093i −0.576689 + 0.614248i
\(741\) 2.80555i 0.103064i
\(742\) 8.96879 3.88173i 0.329255 0.142503i
\(743\) 18.4884 0.678273 0.339137 0.940737i \(-0.389865\pi\)
0.339137 + 0.940737i \(0.389865\pi\)
\(744\) −6.86081 + 19.0665i −0.251529 + 0.699013i
\(745\) 18.3885 0.673703
\(746\) −3.67656 + 1.59123i −0.134608 + 0.0582591i
\(747\) 39.2180i 1.43491i
\(748\) 12.1674 + 11.4234i 0.444883 + 0.417680i
\(749\) 29.1678i 1.06577i
\(750\) 0.436838 + 1.00932i 0.0159511 + 0.0368551i
\(751\) −32.2524 −1.17691 −0.588454 0.808531i \(-0.700263\pi\)
−0.588454 + 0.808531i \(0.700263\pi\)
\(752\) 3.05385 + 48.3691i 0.111363 + 1.76384i
\(753\) 5.76100 0.209942
\(754\) −0.0320244 0.0739929i −0.00116626 0.00269466i
\(755\) 11.7559i 0.427842i
\(756\) −14.8440 13.9363i −0.539870 0.506859i
\(757\) 28.0963i 1.02118i −0.859825 0.510588i \(-0.829428\pi\)
0.859825 0.510588i \(-0.170572\pi\)
\(758\) 23.1261 10.0091i 0.839977 0.363545i
\(759\) −8.59420 −0.311950
\(760\) 2.66137 + 0.957654i 0.0965381 + 0.0347378i
\(761\) −5.52851 −0.200408 −0.100204 0.994967i \(-0.531950\pi\)
−0.100204 + 0.994967i \(0.531950\pi\)
\(762\) −3.05466 + 1.32207i −0.110659 + 0.0478935i
\(763\) 48.7558i 1.76508i
\(764\) 15.8473 16.8794i 0.573336 0.610676i
\(765\) 9.23368i 0.333844i
\(766\) 7.23035 + 16.7058i 0.261243 + 0.603606i
\(767\) 20.0900 0.725407
\(768\) −1.56495 12.3440i −0.0564703 0.445425i
\(769\) 29.7719 1.07360 0.536800 0.843709i \(-0.319633\pi\)
0.536800 + 0.843709i \(0.319633\pi\)
\(770\) −2.95030 6.81670i −0.106321 0.245657i
\(771\) 17.5237i 0.631099i
\(772\) −0.766641 + 0.816571i −0.0275920 + 0.0293890i
\(773\) 15.9477i 0.573600i 0.957991 + 0.286800i \(0.0925915\pi\)
−0.957991 + 0.286800i \(0.907409\pi\)
\(774\) −17.8752 + 7.73646i −0.642510 + 0.278081i
\(775\) 9.21232 0.330916
\(776\) −38.1968 13.7446i −1.37119 0.493401i
\(777\) 21.6238 0.775750
\(778\) −24.5781 + 10.6375i −0.881168 + 0.381373i
\(779\) 11.4676i 0.410869i
\(780\) 4.09074 + 3.84061i 0.146472 + 0.137516i
\(781\) 33.2386i 1.18937i
\(782\) −11.0554 25.5437i −0.395341 0.913441i
\(783\) −0.0663049 −0.00236954
\(784\) 0.280442 + 4.44184i 0.0100158 + 0.158637i
\(785\) 14.8964 0.531677
\(786\) 2.53841 + 5.86503i 0.0905421 + 0.209199i
\(787\) 11.1170i 0.396277i −0.980174 0.198138i \(-0.936510\pi\)
0.980174 0.198138i \(-0.0634896\pi\)
\(788\) −1.67850 1.57587i −0.0597942 0.0561380i
\(789\) 0.859642i 0.0306041i
\(790\) −2.69583 + 1.16677i −0.0959134 + 0.0415117i
\(791\) 23.6988 0.842631
\(792\) 4.96522 13.7986i 0.176431 0.490312i
\(793\) −4.72976 −0.167959
\(794\) −25.3874 + 10.9878i −0.900964 + 0.389941i
\(795\) 2.21483i 0.0785520i
\(796\) −30.6892 + 32.6879i −1.08775 + 1.15859i
\(797\) 37.8295i 1.33999i 0.742366 + 0.669995i \(0.233704\pi\)
−0.742366 + 0.669995i \(0.766296\pi\)
\(798\) −1.05994 2.44899i −0.0375213 0.0866935i
\(799\) 46.7090 1.65244
\(800\) −5.03958 + 2.56955i −0.178176 + 0.0908473i
\(801\) 35.6822 1.26077
\(802\) −13.2099 30.5217i −0.466458 1.07776i
\(803\) 16.0559i 0.566599i
\(804\) −4.33837 + 4.62092i −0.153003 + 0.162967i
\(805\) 12.3875i 0.436602i
\(806\) 43.1341 18.6686i 1.51933 0.657574i
\(807\) 15.5167 0.546213
\(808\) 11.9445 33.1944i 0.420206 1.16777i
\(809\) 9.28290 0.326369 0.163185 0.986596i \(-0.447823\pi\)
0.163185 + 0.986596i \(0.447823\pi\)
\(810\) −5.09124 + 2.20351i −0.178888 + 0.0774234i
\(811\) 17.0390i 0.598321i 0.954203 + 0.299160i \(0.0967066\pi\)
−0.954203 + 0.299160i \(0.903293\pi\)
\(812\) −0.0559090 0.0524904i −0.00196202 0.00184205i
\(813\) 0.822676i 0.0288525i
\(814\) 13.9342 + 32.1952i 0.488393 + 1.12844i
\(815\) −7.57618 −0.265382
\(816\) −11.9680 + 0.755619i −0.418964 + 0.0264520i
\(817\) −5.75007 −0.201170
\(818\) −19.3760 44.7684i −0.677464 1.56529i
\(819\) 20.9665i 0.732628i
\(820\) −16.7208 15.6984i −0.583915 0.548211i
\(821\) 27.6848i 0.966206i −0.875564 0.483103i \(-0.839510\pi\)
0.875564 0.483103i \(-0.160490\pi\)
\(822\) 3.28536 1.42192i 0.114590 0.0495951i
\(823\) −34.9120 −1.21696 −0.608478 0.793570i \(-0.708220\pi\)
−0.608478 + 0.793570i \(0.708220\pi\)
\(824\) 8.79011 + 3.16299i 0.306218 + 0.110188i
\(825\) 1.68338 0.0586076
\(826\) 17.5368 7.58999i 0.610182 0.264089i
\(827\) 32.2541i 1.12158i −0.827957 0.560792i \(-0.810497\pi\)
0.827957 0.560792i \(-0.189503\pi\)
\(828\) −16.7399 + 17.8301i −0.581751 + 0.619639i
\(829\) 5.17638i 0.179783i −0.995952 0.0898916i \(-0.971348\pi\)
0.995952 0.0898916i \(-0.0286521\pi\)
\(830\) −9.19733 21.2506i −0.319244 0.737617i
\(831\) 1.32157 0.0458449
\(832\) −18.3893 + 22.2438i −0.637533 + 0.771166i
\(833\) 4.28939 0.148619
\(834\) 2.02757 + 4.68474i 0.0702092 + 0.162219i
\(835\) 15.0342i 0.520281i
\(836\) 2.96323 3.15622i 0.102486 0.109160i
\(837\) 38.6524i 1.33602i
\(838\) −1.33403 + 0.577376i −0.0460834 + 0.0199451i
\(839\) −33.6197 −1.16068 −0.580341 0.814374i \(-0.697081\pi\)
−0.580341 + 0.814374i \(0.697081\pi\)
\(840\) 5.02183 + 1.80703i 0.173270 + 0.0623485i
\(841\) 28.9998 0.999991
\(842\) −0.925546 + 0.400580i −0.0318964 + 0.0138049i
\(843\) 16.2017i 0.558015i
\(844\) 6.31675 + 5.93051i 0.217431 + 0.204136i
\(845\) 0.0148907i 0.000512257i
\(846\) −16.3020 37.6659i −0.560473 1.29498i
\(847\) 15.3211 0.526439
\(848\) −11.3694 + 0.717827i −0.390429 + 0.0246503i
\(849\) −10.2908 −0.353179
\(850\) 2.16547 + 5.00334i 0.0742749 + 0.171613i
\(851\) 58.5059i 2.00556i
\(852\) −17.4117 16.3470i −0.596515 0.560040i
\(853\) 25.5027i 0.873198i −0.899656 0.436599i \(-0.856183\pi\)
0.899656 0.436599i \(-0.143817\pi\)
\(854\) −4.12866 + 1.78690i −0.141280 + 0.0611465i
\(855\) −2.39522 −0.0819149
\(856\) 11.5121 31.9927i 0.393475 1.09349i
\(857\) −50.1701 −1.71378 −0.856890 0.515500i \(-0.827606\pi\)
−0.856890 + 0.515500i \(0.827606\pi\)
\(858\) 7.88193 3.41133i 0.269085 0.116461i
\(859\) 11.1713i 0.381161i 0.981672 + 0.190581i \(0.0610371\pi\)
−0.981672 + 0.190581i \(0.938963\pi\)
\(860\) 7.87146 8.38411i 0.268415 0.285896i
\(861\) 21.6386i 0.737441i
\(862\) −5.71597 13.2068i −0.194687 0.449827i
\(863\) 5.42074 0.184524 0.0922621 0.995735i \(-0.470590\pi\)
0.0922621 + 0.995735i \(0.470590\pi\)
\(864\) 10.7811 + 21.1447i 0.366781 + 0.719358i
\(865\) −6.59767 −0.224328
\(866\) −2.63906 6.09758i −0.0896789 0.207204i
\(867\) 1.66320i 0.0564851i
\(868\) 30.5992 32.5921i 1.03861 1.10625i
\(869\) 4.49620i 0.152523i
\(870\) 0.0159502 0.00690333i 0.000540764 0.000234045i
\(871\) 14.7017 0.498148
\(872\) −19.2431 + 53.4777i −0.651655 + 1.81098i
\(873\) 34.3770 1.16349
\(874\) −6.62606 + 2.86779i −0.224130 + 0.0970043i
\(875\) 2.42638i 0.0820267i
\(876\) 8.41068 + 7.89641i 0.284171 + 0.266795i
\(877\) 0.298036i 0.0100640i 0.999987 + 0.00503198i \(0.00160173\pi\)
−0.999987 + 0.00503198i \(0.998398\pi\)
\(878\) −1.42382 3.28974i −0.0480514 0.111024i
\(879\) −21.0003 −0.708322
\(880\) 0.545583 + 8.64132i 0.0183916 + 0.291299i
\(881\) −43.7048 −1.47245 −0.736227 0.676735i \(-0.763394\pi\)
−0.736227 + 0.676735i \(0.763394\pi\)
\(882\) −1.49705 3.45895i −0.0504082 0.116469i
\(883\) 39.0064i 1.31267i −0.754470 0.656334i \(-0.772106\pi\)
0.754470 0.656334i \(-0.227894\pi\)
\(884\) 20.2784 + 19.0384i 0.682035 + 0.640332i
\(885\) 4.33069i 0.145574i
\(886\) 11.5762 5.01024i 0.388911 0.168322i
\(887\) −21.7960 −0.731837 −0.365918 0.930647i \(-0.619245\pi\)
−0.365918 + 0.930647i \(0.619245\pi\)
\(888\) −23.7180 8.53458i −0.795925 0.286402i
\(889\) 7.34334 0.246288
\(890\) −19.3347 + 8.36813i −0.648100 + 0.280500i
\(891\) 8.49134i 0.284470i
\(892\) 7.75256 8.25747i 0.259575 0.276480i
\(893\) 12.1163i 0.405458i
\(894\) 8.03280 + 18.5599i 0.268657 + 0.620735i
\(895\) −23.0731 −0.771248
\(896\) −7.64850 + 26.3643i −0.255518 + 0.880771i
\(897\) −14.3233 −0.478240
\(898\) −2.61144 6.03376i −0.0871448 0.201349i
\(899\) 0.145582i 0.00485543i
\(900\) 3.27890 3.49245i 0.109297 0.116415i
\(901\) 10.9792i 0.365771i
\(902\) −32.2172 + 13.9437i −1.07271 + 0.464275i
\(903\) −10.8500 −0.361066
\(904\) −25.9939 9.35352i −0.864545 0.311094i
\(905\) 11.6959 0.388783
\(906\) 11.8655 5.13544i 0.394205 0.170613i
\(907\) 56.7570i 1.88458i −0.334792 0.942292i \(-0.608666\pi\)
0.334792 0.942292i \(-0.391334\pi\)
\(908\) 9.64429 + 9.05459i 0.320057 + 0.300487i
\(909\) 29.8748i 0.990884i
\(910\) −4.91702 11.3608i −0.162998 0.376608i
\(911\) 2.93914 0.0973781 0.0486891 0.998814i \(-0.484496\pi\)
0.0486891 + 0.998814i \(0.484496\pi\)
\(912\) 0.196008 + 3.10451i 0.00649048 + 0.102801i
\(913\) −35.4424 −1.17297
\(914\) −8.43576 19.4909i −0.279030 0.644703i
\(915\) 1.01957i 0.0337059i
\(916\) 34.1561 + 32.0676i 1.12855 + 1.05954i
\(917\) 14.0994i 0.465603i
\(918\) 20.9926 9.08570i 0.692860 0.299873i
\(919\) 25.0484 0.826270 0.413135 0.910670i \(-0.364434\pi\)
0.413135 + 0.910670i \(0.364434\pi\)
\(920\) 4.88915 13.5872i 0.161190 0.447956i
\(921\) 12.5441 0.413342
\(922\) 7.54021 3.26344i 0.248324 0.107476i
\(923\) 55.3962i 1.82339i
\(924\) 5.59143 5.95558i 0.183944 0.195924i
\(925\) 11.4598i 0.376795i
\(926\) −22.7686 52.6072i −0.748223 1.72878i
\(927\) −7.91107 −0.259833
\(928\) 0.0406065 + 0.0796404i 0.00133297 + 0.00261432i
\(929\) 45.5879 1.49569 0.747845 0.663873i \(-0.231089\pi\)
0.747845 + 0.663873i \(0.231089\pi\)
\(930\) 4.02429 + 9.29817i 0.131962 + 0.304899i
\(931\) 1.11267i 0.0364663i
\(932\) 2.22746 2.37253i 0.0729630 0.0777149i
\(933\) 3.93492i 0.128824i
\(934\) 14.9071 6.45187i 0.487776 0.211112i
\(935\) 8.34473 0.272902
\(936\) 8.27514 22.9970i 0.270481 0.751681i
\(937\) −14.1297 −0.461596 −0.230798 0.973002i \(-0.574134\pi\)
−0.230798 + 0.973002i \(0.574134\pi\)
\(938\) 12.8333 5.55429i 0.419021 0.181354i
\(939\) 20.1703i 0.658233i
\(940\) 17.6667 + 16.5865i 0.576224 + 0.540991i
\(941\) 47.1678i 1.53763i 0.639473 + 0.768814i \(0.279153\pi\)
−0.639473 + 0.768814i \(0.720847\pi\)
\(942\) 6.50733 + 15.0353i 0.212020 + 0.489876i
\(943\) 58.5459 1.90652
\(944\) −22.2308 + 1.40358i −0.723551 + 0.0456825i
\(945\) −10.1804 −0.331169
\(946\) −6.99165 16.1543i −0.227318 0.525222i
\(947\) 31.5579i 1.02549i 0.858540 + 0.512747i \(0.171372\pi\)
−0.858540 + 0.512747i \(0.828628\pi\)
\(948\) −2.35528 2.21127i −0.0764960 0.0718186i
\(949\) 26.7590i 0.868634i
\(950\) 1.29787 0.561724i 0.0421085 0.0182247i
\(951\) 9.87340 0.320167
\(952\) 24.8939 + 8.95770i 0.806817 + 0.290321i
\(953\) 7.84917 0.254260 0.127130 0.991886i \(-0.459424\pi\)
0.127130 + 0.991886i \(0.459424\pi\)
\(954\) 8.85361 3.83188i 0.286646 0.124062i
\(955\) 11.5764i 0.374603i
\(956\) 4.18447 4.45699i 0.135335 0.144149i
\(957\) 0.0266023i 0.000859931i
\(958\) 6.76898 + 15.6398i 0.218696 + 0.505299i
\(959\) −7.89794 −0.255038
\(960\) −4.79498 3.96407i −0.154757 0.127940i
\(961\) 53.8668 1.73764
\(962\) 23.2230 + 53.6571i 0.748740 + 1.72997i
\(963\) 28.7933i 0.927850i
\(964\) −26.2300 + 27.9383i −0.844810 + 0.899831i
\(965\) 0.560028i 0.0180279i
\(966\) −12.5029 + 5.41132i −0.402275 + 0.174106i
\(967\) 25.1503 0.808779 0.404390 0.914587i \(-0.367484\pi\)
0.404390 + 0.914587i \(0.367484\pi\)
\(968\) −16.8049 6.04699i −0.540130 0.194358i
\(969\) 2.99796 0.0963084
\(970\) −18.6274 + 8.06203i −0.598091 + 0.258856i
\(971\) 41.9225i 1.34536i 0.739935 + 0.672679i \(0.234856\pi\)
−0.739935 + 0.672679i \(0.765144\pi\)
\(972\) −22.8013 21.4071i −0.731352 0.686633i
\(973\) 11.2620i 0.361043i
\(974\) 0.834596 + 1.92834i 0.0267422 + 0.0617881i
\(975\) 2.80555 0.0898495
\(976\) 5.23378 0.330442i 0.167529 0.0105772i
\(977\) −15.0371 −0.481079 −0.240540 0.970639i \(-0.577324\pi\)
−0.240540 + 0.970639i \(0.577324\pi\)
\(978\) −3.30956 7.64679i −0.105828 0.244517i
\(979\) 32.2470i 1.03062i
\(980\) 1.62237 + 1.52317i 0.0518248 + 0.0486559i
\(981\) 48.1297i 1.53666i
\(982\) 38.5384 16.6796i 1.22981 0.532267i
\(983\) −10.7761 −0.343703 −0.171852 0.985123i \(-0.554975\pi\)
−0.171852 + 0.985123i \(0.554975\pi\)
\(984\) 8.54041 23.7342i 0.272258 0.756620i
\(985\) −1.15117 −0.0366792
\(986\) 0.0790676 0.0342208i 0.00251802 0.00108981i
\(987\) 22.8627i 0.727729i
\(988\) 4.93858 5.26022i 0.157117 0.167350i
\(989\) 29.3560i 0.933468i
\(990\) −2.91241 6.72916i −0.0925625 0.213867i
\(991\) 24.6508 0.783060 0.391530 0.920165i \(-0.371946\pi\)
0.391530 + 0.920165i \(0.371946\pi\)
\(992\) −46.4263 + 23.6715i −1.47404 + 0.751571i
\(993\) 19.9693 0.633706
\(994\) 20.9287 + 48.3559i 0.663817 + 1.53376i
\(995\) 22.4183i 0.710708i
\(996\) 17.4309 18.5661i 0.552318 0.588289i
\(997\) 15.6869i 0.496809i −0.968656 0.248404i \(-0.920094\pi\)
0.968656 0.248404i \(-0.0799062\pi\)
\(998\) −40.8010 + 17.6588i −1.29153 + 0.558981i
\(999\) 48.0820 1.52125
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 760.2.f.b.381.28 yes 44
4.3 odd 2 3040.2.f.b.1521.19 44
8.3 odd 2 3040.2.f.b.1521.26 44
8.5 even 2 inner 760.2.f.b.381.27 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
760.2.f.b.381.27 44 8.5 even 2 inner
760.2.f.b.381.28 yes 44 1.1 even 1 trivial
3040.2.f.b.1521.19 44 4.3 odd 2
3040.2.f.b.1521.26 44 8.3 odd 2