L(s) = 1 | + 2·2-s − 2·3-s + 3·4-s − 4·6-s + 4·8-s + 3·9-s − 4·11-s − 6·12-s + 6·13-s + 5·16-s + 2·17-s + 6·18-s + 8·19-s − 8·22-s + 6·23-s − 8·24-s + 12·26-s − 4·27-s − 10·29-s + 6·31-s + 6·32-s + 8·33-s + 4·34-s + 9·36-s − 8·37-s + 16·38-s − 12·39-s + ⋯ |
L(s) = 1 | + 1.41·2-s − 1.15·3-s + 3/2·4-s − 1.63·6-s + 1.41·8-s + 9-s − 1.20·11-s − 1.73·12-s + 1.66·13-s + 5/4·16-s + 0.485·17-s + 1.41·18-s + 1.83·19-s − 1.70·22-s + 1.25·23-s − 1.63·24-s + 2.35·26-s − 0.769·27-s − 1.85·29-s + 1.07·31-s + 1.06·32-s + 1.39·33-s + 0.685·34-s + 3/2·36-s − 1.31·37-s + 2.59·38-s − 1.92·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 54022500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54022500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(6.973565929\) |
\(L(\frac12)\) |
\(\approx\) |
\(6.973565929\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.66263692450090686510326776552, −7.65489168011193579071417810725, −7.20631049385956534606659243840, −7.12412960075898860988496092559, −6.35749665209084826093271008217, −6.29731244939544276947778215530, −5.76893529579824842087721529913, −5.64424219206451047630738744027, −5.22018031788748319305832197204, −5.14767662828047935785018067411, −4.51227245967404926376717183911, −4.36113260080479830342227147056, −3.64586933829706876456116285702, −3.47257796576051962867658091826, −3.13772720771022185391582059998, −2.67878774145804997166649562950, −2.05887782358820700963961461289, −1.54741805482697464885848866774, −1.02813631580627332876986671684, −0.61575118696838810207196711915,
0.61575118696838810207196711915, 1.02813631580627332876986671684, 1.54741805482697464885848866774, 2.05887782358820700963961461289, 2.67878774145804997166649562950, 3.13772720771022185391582059998, 3.47257796576051962867658091826, 3.64586933829706876456116285702, 4.36113260080479830342227147056, 4.51227245967404926376717183911, 5.14767662828047935785018067411, 5.22018031788748319305832197204, 5.64424219206451047630738744027, 5.76893529579824842087721529913, 6.29731244939544276947778215530, 6.35749665209084826093271008217, 7.12412960075898860988496092559, 7.20631049385956534606659243840, 7.65489168011193579071417810725, 7.66263692450090686510326776552