L(s) = 1 | − 2·2-s − 2·3-s + 3·4-s + 4·6-s − 4·8-s + 3·9-s + 4·11-s − 6·12-s − 6·13-s + 5·16-s − 6·17-s − 6·18-s − 8·22-s + 2·23-s + 8·24-s + 12·26-s − 4·27-s + 2·29-s + 2·31-s − 6·32-s − 8·33-s + 12·34-s + 9·36-s + 12·39-s + 6·41-s + 6·43-s + 12·44-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 1.15·3-s + 3/2·4-s + 1.63·6-s − 1.41·8-s + 9-s + 1.20·11-s − 1.73·12-s − 1.66·13-s + 5/4·16-s − 1.45·17-s − 1.41·18-s − 1.70·22-s + 0.417·23-s + 1.63·24-s + 2.35·26-s − 0.769·27-s + 0.371·29-s + 0.359·31-s − 1.06·32-s − 1.39·33-s + 2.05·34-s + 3/2·36-s + 1.92·39-s + 0.937·41-s + 0.914·43-s + 1.80·44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 54022500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54022500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.44738457936252861439043351225, −7.42050719436148590251891713035, −6.97524019143703877152728860628, −6.95899990358277577653819572118, −6.33317022405491944313625919723, −6.23919894503354940519719772265, −5.72387497126071200410068388500, −5.44164303381253084263947924515, −4.91661923398124263917147781700, −4.49297742994058968925979669151, −4.25174530870666938447738743425, −3.93719486980068151461627468688, −3.00237178770594034357857191264, −2.90447206019731083618982246724, −2.10711473110370834063780098661, −2.07910301303764931853925493238, −1.10310008880618584160343873059, −1.09989353415292719631247914622, 0, 0,
1.09989353415292719631247914622, 1.10310008880618584160343873059, 2.07910301303764931853925493238, 2.10711473110370834063780098661, 2.90447206019731083618982246724, 3.00237178770594034357857191264, 3.93719486980068151461627468688, 4.25174530870666938447738743425, 4.49297742994058968925979669151, 4.91661923398124263917147781700, 5.44164303381253084263947924515, 5.72387497126071200410068388500, 6.23919894503354940519719772265, 6.33317022405491944313625919723, 6.95899990358277577653819572118, 6.97524019143703877152728860628, 7.42050719436148590251891713035, 7.44738457936252861439043351225