Properties

Label 2-735-1.1-c3-0-45
Degree $2$
Conductor $735$
Sign $-1$
Analytic cond. $43.3664$
Root an. cond. $6.58531$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.461·2-s − 3·3-s − 7.78·4-s − 5·5-s − 1.38·6-s − 7.28·8-s + 9·9-s − 2.30·10-s − 24.3·11-s + 23.3·12-s + 66.1·13-s + 15·15-s + 58.9·16-s + 19.6·17-s + 4.15·18-s − 64.6·19-s + 38.9·20-s − 11.2·22-s + 147.·23-s + 21.8·24-s + 25·25-s + 30.5·26-s − 27·27-s + 166.·29-s + 6.91·30-s − 189.·31-s + 85.4·32-s + ⋯
L(s)  = 1  + 0.163·2-s − 0.577·3-s − 0.973·4-s − 0.447·5-s − 0.0941·6-s − 0.321·8-s + 0.333·9-s − 0.0729·10-s − 0.666·11-s + 0.561·12-s + 1.41·13-s + 0.258·15-s + 0.920·16-s + 0.279·17-s + 0.0543·18-s − 0.781·19-s + 0.435·20-s − 0.108·22-s + 1.33·23-s + 0.185·24-s + 0.200·25-s + 0.230·26-s − 0.192·27-s + 1.06·29-s + 0.0421·30-s − 1.10·31-s + 0.471·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(735\)    =    \(3 \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(43.3664\)
Root analytic conductor: \(6.58531\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 735,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 + 5T \)
7 \( 1 \)
good2 \( 1 - 0.461T + 8T^{2} \)
11 \( 1 + 24.3T + 1.33e3T^{2} \)
13 \( 1 - 66.1T + 2.19e3T^{2} \)
17 \( 1 - 19.6T + 4.91e3T^{2} \)
19 \( 1 + 64.6T + 6.85e3T^{2} \)
23 \( 1 - 147.T + 1.21e4T^{2} \)
29 \( 1 - 166.T + 2.43e4T^{2} \)
31 \( 1 + 189.T + 2.97e4T^{2} \)
37 \( 1 + 75.8T + 5.06e4T^{2} \)
41 \( 1 + 186.T + 6.89e4T^{2} \)
43 \( 1 - 110.T + 7.95e4T^{2} \)
47 \( 1 - 380.T + 1.03e5T^{2} \)
53 \( 1 + 712.T + 1.48e5T^{2} \)
59 \( 1 + 308.T + 2.05e5T^{2} \)
61 \( 1 + 489.T + 2.26e5T^{2} \)
67 \( 1 - 757.T + 3.00e5T^{2} \)
71 \( 1 + 58.0T + 3.57e5T^{2} \)
73 \( 1 + 58.0T + 3.89e5T^{2} \)
79 \( 1 - 865.T + 4.93e5T^{2} \)
83 \( 1 + 829.T + 5.71e5T^{2} \)
89 \( 1 + 1.09e3T + 7.04e5T^{2} \)
97 \( 1 + 1.11e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.500709762893109450482955716349, −8.660054668922995490857425618740, −7.993403985277030441077551164214, −6.82138918477865835640504464448, −5.81861830549520750482368630091, −4.99561490269359742148421429031, −4.10924827789934818087706311333, −3.14138153783314693025219269258, −1.19589978091034030138149270723, 0, 1.19589978091034030138149270723, 3.14138153783314693025219269258, 4.10924827789934818087706311333, 4.99561490269359742148421429031, 5.81861830549520750482368630091, 6.82138918477865835640504464448, 7.993403985277030441077551164214, 8.660054668922995490857425618740, 9.500709762893109450482955716349

Graph of the $Z$-function along the critical line