L(s) = 1 | + (−1.20 − 2.09i)2-s + (−0.5 + 0.866i)3-s + (−1.91 + 3.31i)4-s + (−0.5 − 0.866i)5-s + 2.41·6-s + 4.41·8-s + (−0.499 − 0.866i)9-s + (−1.20 + 2.09i)10-s + (−1.41 + 2.44i)11-s + (−1.91 − 3.31i)12-s − 4.82·13-s + 0.999·15-s + (−1.49 − 2.59i)16-s + (3.82 − 6.63i)17-s + (−1.20 + 2.09i)18-s + (0.414 + 0.717i)19-s + ⋯ |
L(s) = 1 | + (−0.853 − 1.47i)2-s + (−0.288 + 0.499i)3-s + (−0.957 + 1.65i)4-s + (−0.223 − 0.387i)5-s + 0.985·6-s + 1.56·8-s + (−0.166 − 0.288i)9-s + (−0.381 + 0.661i)10-s + (−0.426 + 0.738i)11-s + (−0.552 − 0.957i)12-s − 1.33·13-s + 0.258·15-s + (−0.374 − 0.649i)16-s + (0.928 − 1.60i)17-s + (−0.284 + 0.492i)18-s + (0.0950 + 0.164i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.585836 - 0.290415i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.585836 - 0.290415i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (1.20 + 2.09i)T + (-1 + 1.73i)T^{2} \) |
| 11 | \( 1 + (1.41 - 2.44i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 4.82T + 13T^{2} \) |
| 17 | \( 1 + (-3.82 + 6.63i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.414 - 0.717i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.82 - 6.63i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 6T + 29T^{2} \) |
| 31 | \( 1 + (3.24 - 5.61i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.82 - 3.16i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 11.6T + 41T^{2} \) |
| 43 | \( 1 - 8T + 43T^{2} \) |
| 47 | \( 1 + (2.82 + 4.89i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.24 + 7.34i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (1.17 - 2.02i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 2.82T + 71T^{2} \) |
| 73 | \( 1 + (-5.58 + 9.67i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-4 - 6.92i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 1.65T + 83T^{2} \) |
| 89 | \( 1 + (-2.65 - 4.60i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 6.48T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.14188208027068298961424115730, −9.585506107029308139462348702159, −9.100705049676843155710732155307, −7.83890744590964923781720831229, −7.21410739840868236413808734438, −5.31247106158484299285649387837, −4.64949133199915553946549913601, −3.36131954724444709751343913716, −2.45220152870654412987479986272, −0.878063798946793224939747534544,
0.68101102281013593709002747963, 2.68234368547621746988347378805, 4.48498073078812778223524006802, 5.69145544353189354320740457565, 6.19133515535854095573213963610, 7.21212205618006407902763413819, 7.77393979109641428238731243817, 8.451068404806409614961644677026, 9.419476324572765473323289585076, 10.37697973638002951622160666226