Properties

Label 735.2.i.g
Level $735$
Weight $2$
Character orbit 735.i
Analytic conductor $5.869$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(226,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.226"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,-2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} + \beta_1 - 1) q^{2} + \beta_{2} q^{3} + ( - 2 \beta_{3} + \beta_{2} - 2 \beta_1) q^{4} + ( - \beta_{2} - 1) q^{5} + (\beta_{3} + 1) q^{6} + (\beta_{3} + 3) q^{8} + ( - \beta_{2} - 1) q^{9}+ \cdots + 2 \beta_{3} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{3} - 2 q^{4} - 2 q^{5} + 4 q^{6} + 12 q^{8} - 2 q^{9} - 2 q^{10} - 2 q^{12} - 8 q^{13} + 4 q^{15} - 6 q^{16} + 4 q^{17} - 2 q^{18} - 4 q^{19} + 4 q^{20} + 16 q^{22} + 4 q^{23} - 6 q^{24}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(-1 - \beta_{2}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
226.1
−0.707107 + 1.22474i
0.707107 1.22474i
−0.707107 1.22474i
0.707107 + 1.22474i
−1.20711 + 2.09077i −0.500000 0.866025i −1.91421 3.31552i −0.500000 + 0.866025i 2.41421 0 4.41421 −0.500000 + 0.866025i −1.20711 2.09077i
226.2 0.207107 0.358719i −0.500000 0.866025i 0.914214 + 1.58346i −0.500000 + 0.866025i −0.414214 0 1.58579 −0.500000 + 0.866025i 0.207107 + 0.358719i
361.1 −1.20711 2.09077i −0.500000 + 0.866025i −1.91421 + 3.31552i −0.500000 0.866025i 2.41421 0 4.41421 −0.500000 0.866025i −1.20711 + 2.09077i
361.2 0.207107 + 0.358719i −0.500000 + 0.866025i 0.914214 1.58346i −0.500000 0.866025i −0.414214 0 1.58579 −0.500000 0.866025i 0.207107 0.358719i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 735.2.i.g 4
7.b odd 2 1 735.2.i.h 4
7.c even 3 1 735.2.a.m yes 2
7.c even 3 1 inner 735.2.i.g 4
7.d odd 6 1 735.2.a.l 2
7.d odd 6 1 735.2.i.h 4
21.g even 6 1 2205.2.a.r 2
21.h odd 6 1 2205.2.a.o 2
35.i odd 6 1 3675.2.a.t 2
35.j even 6 1 3675.2.a.s 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
735.2.a.l 2 7.d odd 6 1
735.2.a.m yes 2 7.c even 3 1
735.2.i.g 4 1.a even 1 1 trivial
735.2.i.g 4 7.c even 3 1 inner
735.2.i.h 4 7.b odd 2 1
735.2.i.h 4 7.d odd 6 1
2205.2.a.o 2 21.h odd 6 1
2205.2.a.r 2 21.g even 6 1
3675.2.a.s 2 35.j even 6 1
3675.2.a.t 2 35.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(735, [\chi])\):

\( T_{2}^{4} + 2T_{2}^{3} + 5T_{2}^{2} - 2T_{2} + 1 \) Copy content Toggle raw display
\( T_{13}^{2} + 4T_{13} - 4 \) Copy content Toggle raw display
\( T_{17}^{4} - 4T_{17}^{3} + 44T_{17}^{2} + 112T_{17} + 784 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 2 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 8T^{2} + 64 \) Copy content Toggle raw display
$13$ \( (T^{2} + 4 T - 4)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 4 T^{3} + \cdots + 784 \) Copy content Toggle raw display
$19$ \( T^{4} + 4 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$23$ \( T^{4} - 4 T^{3} + \cdots + 784 \) Copy content Toggle raw display
$29$ \( (T - 6)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} - 4 T^{3} + \cdots + 4624 \) Copy content Toggle raw display
$37$ \( T^{4} + 4 T^{3} + \cdots + 784 \) Copy content Toggle raw display
$41$ \( (T^{2} - 12 T + 4)^{2} \) Copy content Toggle raw display
$43$ \( (T - 8)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + 32T^{2} + 1024 \) Copy content Toggle raw display
$53$ \( T^{4} + 72T^{2} + 5184 \) Copy content Toggle raw display
$59$ \( T^{4} + 16 T^{3} + \cdots + 1024 \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 28 T^{3} + \cdots + 35344 \) Copy content Toggle raw display
$79$ \( (T^{2} - 8 T + 64)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 8 T - 16)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 12 T^{3} + \cdots + 8464 \) Copy content Toggle raw display
$97$ \( (T^{2} + 4 T - 68)^{2} \) Copy content Toggle raw display
show more
show less