L(s) = 1 | + 1.93i·2-s − i·3-s − 1.73·4-s + (−1.41 − 1.73i)5-s + 1.93·6-s + 0.517i·8-s − 9-s + (3.34 − 2.73i)10-s − 3.46·11-s + 1.73i·12-s + 4i·13-s + (−1.73 + 1.41i)15-s − 4.46·16-s − 4i·17-s − 1.93i·18-s + 0.378·19-s + ⋯ |
L(s) = 1 | + 1.36i·2-s − 0.577i·3-s − 0.866·4-s + (−0.632 − 0.774i)5-s + 0.788·6-s + 0.183i·8-s − 0.333·9-s + (1.05 − 0.863i)10-s − 1.04·11-s + 0.500i·12-s + 1.10i·13-s + (−0.447 + 0.365i)15-s − 1.11·16-s − 0.970i·17-s − 0.455i·18-s + 0.0869·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.774 + 0.632i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.774 + 0.632i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0790825 - 0.221896i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0790825 - 0.221896i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + iT \) |
| 5 | \( 1 + (1.41 + 1.73i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 1.93iT - 2T^{2} \) |
| 11 | \( 1 + 3.46T + 11T^{2} \) |
| 13 | \( 1 - 4iT - 13T^{2} \) |
| 17 | \( 1 + 4iT - 17T^{2} \) |
| 19 | \( 1 - 0.378T + 19T^{2} \) |
| 23 | \( 1 - 6.31iT - 23T^{2} \) |
| 29 | \( 1 + 8.92T + 29T^{2} \) |
| 31 | \( 1 + 7.34T + 31T^{2} \) |
| 37 | \( 1 - 0.757iT - 37T^{2} \) |
| 41 | \( 1 + 8.48T + 41T^{2} \) |
| 43 | \( 1 - 43T^{2} \) |
| 47 | \( 1 + 6iT - 47T^{2} \) |
| 53 | \( 1 + 7.34iT - 53T^{2} \) |
| 59 | \( 1 + 10.5T + 59T^{2} \) |
| 61 | \( 1 - 9.14T + 61T^{2} \) |
| 67 | \( 1 - 6.96iT - 67T^{2} \) |
| 71 | \( 1 - 14.3T + 71T^{2} \) |
| 73 | \( 1 - 10.9iT - 73T^{2} \) |
| 79 | \( 1 - 11.4T + 79T^{2} \) |
| 83 | \( 1 - 6iT - 83T^{2} \) |
| 89 | \( 1 - 4.14T + 89T^{2} \) |
| 97 | \( 1 + 5.07iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.27151899836437135539584682996, −9.582095219455740719251126434529, −8.892245817847791756784018369502, −8.018088396196062562609608116977, −7.39537109112062604013721237980, −6.82625601484252429815580011616, −5.44426418218221373832655456073, −5.13201808618868524159134312199, −3.72619546432153492796452819380, −1.97164062563297937715560680232,
0.11230493458551007059891786332, 2.19702728724732113146310603719, 3.19872095737642322458585764762, 3.82613793257231242597309091962, 4.99953448077176096315822396096, 6.19349935683189189925694159750, 7.46261548119238737127561400691, 8.257535580421499432557463101708, 9.367316094136617471271826948978, 10.33590345762475132725526069594