Properties

Label 2-728-13.10-c1-0-10
Degree $2$
Conductor $728$
Sign $0.956 - 0.290i$
Analytic cond. $5.81310$
Root an. cond. $2.41103$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.01 + 1.76i)3-s − 2.24i·5-s + (−0.866 − 0.5i)7-s + (−0.570 + 0.987i)9-s + (0.952 − 0.549i)11-s + (1.09 + 3.43i)13-s + (3.95 − 2.28i)15-s + (2.59 − 4.49i)17-s + (5.17 + 2.98i)19-s − 2.03i·21-s + (4.03 + 6.98i)23-s − 0.0486·25-s + 3.78·27-s + (−2.88 − 4.99i)29-s − 2.86i·31-s + ⋯
L(s)  = 1  + (0.587 + 1.01i)3-s − 1.00i·5-s + (−0.327 − 0.188i)7-s + (−0.190 + 0.329i)9-s + (0.287 − 0.165i)11-s + (0.302 + 0.953i)13-s + (1.02 − 0.590i)15-s + (0.629 − 1.08i)17-s + (1.18 + 0.685i)19-s − 0.444i·21-s + (0.841 + 1.45i)23-s − 0.00972·25-s + 0.728·27-s + (−0.535 − 0.927i)29-s − 0.515i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.956 - 0.290i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.956 - 0.290i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(728\)    =    \(2^{3} \cdot 7 \cdot 13\)
Sign: $0.956 - 0.290i$
Analytic conductor: \(5.81310\)
Root analytic conductor: \(2.41103\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{728} (673, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 728,\ (\ :1/2),\ 0.956 - 0.290i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.91290 + 0.283959i\)
\(L(\frac12)\) \(\approx\) \(1.91290 + 0.283959i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + (0.866 + 0.5i)T \)
13 \( 1 + (-1.09 - 3.43i)T \)
good3 \( 1 + (-1.01 - 1.76i)T + (-1.5 + 2.59i)T^{2} \)
5 \( 1 + 2.24iT - 5T^{2} \)
11 \( 1 + (-0.952 + 0.549i)T + (5.5 - 9.52i)T^{2} \)
17 \( 1 + (-2.59 + 4.49i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-5.17 - 2.98i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (-4.03 - 6.98i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (2.88 + 4.99i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 + 2.86iT - 31T^{2} \)
37 \( 1 + (-9.73 + 5.61i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (9.08 - 5.24i)T + (20.5 - 35.5i)T^{2} \)
43 \( 1 + (2.38 - 4.13i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + 13.4iT - 47T^{2} \)
53 \( 1 + 12.4T + 53T^{2} \)
59 \( 1 + (-4.24 - 2.45i)T + (29.5 + 51.0i)T^{2} \)
61 \( 1 + (5.06 - 8.77i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (2.00 - 1.15i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (-2.77 - 1.60i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 - 5.50iT - 73T^{2} \)
79 \( 1 + 10.2T + 79T^{2} \)
83 \( 1 + 3.92iT - 83T^{2} \)
89 \( 1 + (-9.61 + 5.55i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + (7.46 + 4.31i)T + (48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.988550671812884454509970779486, −9.488431092091467177447521798124, −9.081093374230954936067899233107, −8.031910610474940199239639656905, −7.07000221682069427666250579492, −5.72872813238027787269965910948, −4.83938547357438973525961535143, −3.93588110910916582410981248492, −3.11399416867314768165161121159, −1.24054272776326575396413256480, 1.32097907765020360070341530925, 2.78998735891384042244113165224, 3.29729262022380101036769448447, 5.00874676259589311826453421107, 6.30377544837512972017651910533, 6.86090454688828023036178163836, 7.72127735163707016523307551089, 8.416270046176458697820247615298, 9.443961607176938286542706798688, 10.50084312840747019832580343508

Graph of the $Z$-function along the critical line