L(s) = 1 | + (1.01 − 1.76i)3-s + 2.24i·5-s + (−0.866 + 0.5i)7-s + (−0.570 − 0.987i)9-s + (0.952 + 0.549i)11-s + (1.09 − 3.43i)13-s + (3.95 + 2.28i)15-s + (2.59 + 4.49i)17-s + (5.17 − 2.98i)19-s + 2.03i·21-s + (4.03 − 6.98i)23-s − 0.0486·25-s + 3.78·27-s + (−2.88 + 4.99i)29-s + 2.86i·31-s + ⋯ |
L(s) = 1 | + (0.587 − 1.01i)3-s + 1.00i·5-s + (−0.327 + 0.188i)7-s + (−0.190 − 0.329i)9-s + (0.287 + 0.165i)11-s + (0.302 − 0.953i)13-s + (1.02 + 0.590i)15-s + (0.629 + 1.08i)17-s + (1.18 − 0.685i)19-s + 0.444i·21-s + (0.841 − 1.45i)23-s − 0.00972·25-s + 0.728·27-s + (−0.535 + 0.927i)29-s + 0.515i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.956 + 0.290i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.956 + 0.290i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.91290 - 0.283959i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.91290 - 0.283959i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (0.866 - 0.5i)T \) |
| 13 | \( 1 + (-1.09 + 3.43i)T \) |
good | 3 | \( 1 + (-1.01 + 1.76i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 - 2.24iT - 5T^{2} \) |
| 11 | \( 1 + (-0.952 - 0.549i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.59 - 4.49i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-5.17 + 2.98i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.03 + 6.98i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.88 - 4.99i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 2.86iT - 31T^{2} \) |
| 37 | \( 1 + (-9.73 - 5.61i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (9.08 + 5.24i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.38 + 4.13i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 13.4iT - 47T^{2} \) |
| 53 | \( 1 + 12.4T + 53T^{2} \) |
| 59 | \( 1 + (-4.24 + 2.45i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5.06 + 8.77i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.00 + 1.15i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.77 + 1.60i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 5.50iT - 73T^{2} \) |
| 79 | \( 1 + 10.2T + 79T^{2} \) |
| 83 | \( 1 - 3.92iT - 83T^{2} \) |
| 89 | \( 1 + (-9.61 - 5.55i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (7.46 - 4.31i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.50084312840747019832580343508, −9.443961607176938286542706798688, −8.416270046176458697820247615298, −7.72127735163707016523307551089, −6.86090454688828023036178163836, −6.30377544837512972017651910533, −5.00874676259589311826453421107, −3.29729262022380101036769448447, −2.78998735891384042244113165224, −1.32097907765020360070341530925,
1.24054272776326575396413256480, 3.11399416867314768165161121159, 3.93588110910916582410981248492, 4.83938547357438973525961535143, 5.72872813238027787269965910948, 7.07000221682069427666250579492, 8.031910610474940199239639656905, 9.081093374230954936067899233107, 9.488431092091467177447521798124, 9.988550671812884454509970779486