L(s) = 1 | − 2-s + (−1.71 − 0.232i)3-s + 4-s − 2.65i·5-s + (1.71 + 0.232i)6-s + 1.64i·7-s − 8-s + (2.89 + 0.798i)9-s + 2.65i·10-s + (−1.71 − 0.232i)12-s − 1.50i·13-s − 1.64i·14-s + (−0.618 + 4.55i)15-s + 16-s + 6.79·17-s + (−2.89 − 0.798i)18-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (−0.990 − 0.134i)3-s + 0.5·4-s − 1.18i·5-s + (0.700 + 0.0950i)6-s + 0.620i·7-s − 0.353·8-s + (0.963 + 0.266i)9-s + 0.839i·10-s + (−0.495 − 0.0671i)12-s − 0.417i·13-s − 0.438i·14-s + (−0.159 + 1.17i)15-s + 0.250·16-s + 1.64·17-s + (−0.681 − 0.188i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 726 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.244 + 0.969i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 726 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.244 + 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.583415 - 0.454513i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.583415 - 0.454513i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + (1.71 + 0.232i)T \) |
| 11 | \( 1 \) |
good | 5 | \( 1 + 2.65iT - 5T^{2} \) |
| 7 | \( 1 - 1.64iT - 7T^{2} \) |
| 13 | \( 1 + 1.50iT - 13T^{2} \) |
| 17 | \( 1 - 6.79T + 17T^{2} \) |
| 19 | \( 1 - 5.48iT - 19T^{2} \) |
| 23 | \( 1 + 4.78iT - 23T^{2} \) |
| 29 | \( 1 + 0.464T + 29T^{2} \) |
| 31 | \( 1 + 5.19T + 31T^{2} \) |
| 37 | \( 1 - 1.00T + 37T^{2} \) |
| 41 | \( 1 - 1.57T + 41T^{2} \) |
| 43 | \( 1 + 3.42iT - 43T^{2} \) |
| 47 | \( 1 + 10.0iT - 47T^{2} \) |
| 53 | \( 1 + 9.82iT - 53T^{2} \) |
| 59 | \( 1 + 6.11iT - 59T^{2} \) |
| 61 | \( 1 + 13.9iT - 61T^{2} \) |
| 67 | \( 1 - 11.7T + 67T^{2} \) |
| 71 | \( 1 - 0.898iT - 71T^{2} \) |
| 73 | \( 1 + 4.62iT - 73T^{2} \) |
| 79 | \( 1 - 3.17iT - 79T^{2} \) |
| 83 | \( 1 - 1.87T + 83T^{2} \) |
| 89 | \( 1 - 12.8iT - 89T^{2} \) |
| 97 | \( 1 + 3.59T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12012918504139245328804712742, −9.494719194531819219425506509434, −8.398154586871839143677954069867, −7.86151443713637298739991969885, −6.67147061462218070304059939256, −5.56872585142622238152157650938, −5.22387373081193829433583255211, −3.73187501130226090841422127020, −1.86159390927664346840555308477, −0.66502705697836599546299529457,
1.17488008535317504335501177556, 2.90715480048940400665121668048, 4.06237380214512920030375751957, 5.44093711386824693266359879028, 6.32230147060021816062500037964, 7.29260077942374622805498086898, 7.50951760833286748197403808372, 9.164351074386196161851131151699, 9.916096095230029023668246695048, 10.62176624106013156607041242869