Properties

Label 726.2.b.c.725.1
Level $726$
Weight $2$
Character 726.725
Analytic conductor $5.797$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [726,2,Mod(725,726)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(726, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("726.725"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 726 = 2 \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 726.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.79713918674\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.185640625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + x^{6} + x^{5} + 4x^{4} + 3x^{3} + 9x^{2} - 81x + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 725.1
Root \(1.71634 + 0.232753i\) of defining polynomial
Character \(\chi\) \(=\) 726.725
Dual form 726.2.b.c.725.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +(-1.71634 - 0.232753i) q^{3} +1.00000 q^{4} -2.65532i q^{5} +(1.71634 + 0.232753i) q^{6} +1.64108i q^{7} -1.00000 q^{8} +(2.89165 + 0.798968i) q^{9} +2.65532i q^{10} +(-1.71634 - 0.232753i) q^{12} -1.50641i q^{13} -1.64108i q^{14} +(-0.618034 + 4.55743i) q^{15} +1.00000 q^{16} +6.79026 q^{17} +(-2.89165 - 0.798968i) q^{18} +5.48844i q^{19} -2.65532i q^{20} +(0.381966 - 2.81665i) q^{21} -4.78856i q^{23} +(1.71634 + 0.232753i) q^{24} -2.05072 q^{25} +1.50641i q^{26} +(-4.77710 - 2.04434i) q^{27} +1.64108i q^{28} -0.464026 q^{29} +(0.618034 - 4.55743i) q^{30} -5.19231 q^{31} -1.00000 q^{32} -6.79026 q^{34} +4.35758 q^{35} +(2.89165 + 0.798968i) q^{36} +1.00696 q^{37} -5.48844i q^{38} +(-0.350622 + 2.58551i) q^{39} +2.65532i q^{40} +1.57428 q^{41} +(-0.381966 + 2.81665i) q^{42} -3.42500i q^{43} +(2.12151 - 7.67826i) q^{45} +4.78856i q^{46} -10.0129i q^{47} +(-1.71634 - 0.232753i) q^{48} +4.30687 q^{49} +2.05072 q^{50} +(-11.6544 - 1.58046i) q^{51} -1.50641i q^{52} -9.82493i q^{53} +(4.77710 + 2.04434i) q^{54} -1.64108i q^{56} +(1.27745 - 9.42004i) q^{57} +0.464026 q^{58} -6.11223i q^{59} +(-0.618034 + 4.55743i) q^{60} -13.9034i q^{61} +5.19231 q^{62} +(-1.31117 + 4.74542i) q^{63} +1.00000 q^{64} -4.00000 q^{65} +11.7972 q^{67} +6.79026 q^{68} +(-1.11455 + 8.21881i) q^{69} -4.35758 q^{70} +0.898056i q^{71} +(-2.89165 - 0.798968i) q^{72} -4.62724i q^{73} -1.00696 q^{74} +(3.51973 + 0.477311i) q^{75} +5.48844i q^{76} +(0.350622 - 2.58551i) q^{78} +3.17739i q^{79} -2.65532i q^{80} +(7.72330 + 4.62067i) q^{81} -1.57428 q^{82} +1.87418 q^{83} +(0.381966 - 2.81665i) q^{84} -18.0303i q^{85} +3.42500i q^{86} +(0.796426 + 0.108003i) q^{87} +12.8092i q^{89} +(-2.12151 + 7.67826i) q^{90} +2.47214 q^{91} -4.78856i q^{92} +(8.91178 + 1.20853i) q^{93} +10.0129i q^{94} +14.5736 q^{95} +(1.71634 + 0.232753i) q^{96} -3.59099 q^{97} -4.30687 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} - 3 q^{3} + 8 q^{4} + 3 q^{6} - 8 q^{8} + 7 q^{9} - 3 q^{12} + 4 q^{15} + 8 q^{16} - 10 q^{17} - 7 q^{18} + 12 q^{21} + 3 q^{24} + 14 q^{25} - 15 q^{27} - 2 q^{29} - 4 q^{30} - 22 q^{31} - 8 q^{32}+ \cdots - 22 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/726\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(607\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.71634 0.232753i −0.990930 0.134380i
\(4\) 1.00000 0.500000
\(5\) 2.65532i 1.18749i −0.804652 0.593747i \(-0.797648\pi\)
0.804652 0.593747i \(-0.202352\pi\)
\(6\) 1.71634 + 0.232753i 0.700693 + 0.0950211i
\(7\) 1.64108i 0.620269i 0.950693 + 0.310134i \(0.100374\pi\)
−0.950693 + 0.310134i \(0.899626\pi\)
\(8\) −1.00000 −0.353553
\(9\) 2.89165 + 0.798968i 0.963884 + 0.266323i
\(10\) 2.65532i 0.839685i
\(11\) 0 0
\(12\) −1.71634 0.232753i −0.495465 0.0671901i
\(13\) 1.50641i 0.417803i −0.977937 0.208902i \(-0.933011\pi\)
0.977937 0.208902i \(-0.0669888\pi\)
\(14\) 1.64108i 0.438596i
\(15\) −0.618034 + 4.55743i −0.159576 + 1.17672i
\(16\) 1.00000 0.250000
\(17\) 6.79026 1.64688 0.823440 0.567403i \(-0.192052\pi\)
0.823440 + 0.567403i \(0.192052\pi\)
\(18\) −2.89165 0.798968i −0.681569 0.188319i
\(19\) 5.48844i 1.25914i 0.776946 + 0.629568i \(0.216768\pi\)
−0.776946 + 0.629568i \(0.783232\pi\)
\(20\) 2.65532i 0.593747i
\(21\) 0.381966 2.81665i 0.0833518 0.614643i
\(22\) 0 0
\(23\) 4.78856i 0.998485i −0.866462 0.499242i \(-0.833612\pi\)
0.866462 0.499242i \(-0.166388\pi\)
\(24\) 1.71634 + 0.232753i 0.350347 + 0.0475106i
\(25\) −2.05072 −0.410143
\(26\) 1.50641i 0.295431i
\(27\) −4.77710 2.04434i −0.919353 0.393434i
\(28\) 1.64108i 0.310134i
\(29\) −0.464026 −0.0861674 −0.0430837 0.999071i \(-0.513718\pi\)
−0.0430837 + 0.999071i \(0.513718\pi\)
\(30\) 0.618034 4.55743i 0.112837 0.832069i
\(31\) −5.19231 −0.932567 −0.466283 0.884635i \(-0.654407\pi\)
−0.466283 + 0.884635i \(0.654407\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −6.79026 −1.16452
\(35\) 4.35758 0.736566
\(36\) 2.89165 + 0.798968i 0.481942 + 0.133161i
\(37\) 1.00696 0.165543 0.0827716 0.996569i \(-0.473623\pi\)
0.0827716 + 0.996569i \(0.473623\pi\)
\(38\) 5.48844i 0.890343i
\(39\) −0.350622 + 2.58551i −0.0561445 + 0.414014i
\(40\) 2.65532i 0.419843i
\(41\) 1.57428 0.245861 0.122930 0.992415i \(-0.460771\pi\)
0.122930 + 0.992415i \(0.460771\pi\)
\(42\) −0.381966 + 2.81665i −0.0589386 + 0.434618i
\(43\) 3.42500i 0.522308i −0.965297 0.261154i \(-0.915897\pi\)
0.965297 0.261154i \(-0.0841030\pi\)
\(44\) 0 0
\(45\) 2.12151 7.67826i 0.316257 1.14461i
\(46\) 4.78856i 0.706035i
\(47\) 10.0129i 1.46053i −0.683162 0.730267i \(-0.739396\pi\)
0.683162 0.730267i \(-0.260604\pi\)
\(48\) −1.71634 0.232753i −0.247732 0.0335950i
\(49\) 4.30687 0.615267
\(50\) 2.05072 0.290015
\(51\) −11.6544 1.58046i −1.63194 0.221308i
\(52\) 1.50641i 0.208902i
\(53\) 9.82493i 1.34956i −0.738020 0.674779i \(-0.764239\pi\)
0.738020 0.674779i \(-0.235761\pi\)
\(54\) 4.77710 + 2.04434i 0.650081 + 0.278200i
\(55\) 0 0
\(56\) 1.64108i 0.219298i
\(57\) 1.27745 9.42004i 0.169203 1.24771i
\(58\) 0.464026 0.0609296
\(59\) 6.11223i 0.795744i −0.917441 0.397872i \(-0.869749\pi\)
0.917441 0.397872i \(-0.130251\pi\)
\(60\) −0.618034 + 4.55743i −0.0797878 + 0.588362i
\(61\) 13.9034i 1.78015i −0.455813 0.890076i \(-0.650651\pi\)
0.455813 0.890076i \(-0.349349\pi\)
\(62\) 5.19231 0.659424
\(63\) −1.31117 + 4.74542i −0.165192 + 0.597867i
\(64\) 1.00000 0.125000
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) 11.7972 1.44126 0.720630 0.693320i \(-0.243853\pi\)
0.720630 + 0.693320i \(0.243853\pi\)
\(68\) 6.79026 0.823440
\(69\) −1.11455 + 8.21881i −0.134177 + 0.989428i
\(70\) −4.35758 −0.520831
\(71\) 0.898056i 0.106580i 0.998579 + 0.0532898i \(0.0169707\pi\)
−0.998579 + 0.0532898i \(0.983029\pi\)
\(72\) −2.89165 0.798968i −0.340784 0.0941593i
\(73\) 4.62724i 0.541577i −0.962639 0.270788i \(-0.912716\pi\)
0.962639 0.270788i \(-0.0872844\pi\)
\(74\) −1.00696 −0.117057
\(75\) 3.51973 + 0.477311i 0.406423 + 0.0551151i
\(76\) 5.48844i 0.629568i
\(77\) 0 0
\(78\) 0.350622 2.58551i 0.0397001 0.292752i
\(79\) 3.17739i 0.357484i 0.983896 + 0.178742i \(0.0572028\pi\)
−0.983896 + 0.178742i \(0.942797\pi\)
\(80\) 2.65532i 0.296874i
\(81\) 7.72330 + 4.62067i 0.858145 + 0.513408i
\(82\) −1.57428 −0.173850
\(83\) 1.87418 0.205718 0.102859 0.994696i \(-0.467201\pi\)
0.102859 + 0.994696i \(0.467201\pi\)
\(84\) 0.381966 2.81665i 0.0416759 0.307321i
\(85\) 18.0303i 1.95566i
\(86\) 3.42500i 0.369327i
\(87\) 0.796426 + 0.108003i 0.0853859 + 0.0115792i
\(88\) 0 0
\(89\) 12.8092i 1.35777i 0.734244 + 0.678886i \(0.237537\pi\)
−0.734244 + 0.678886i \(0.762463\pi\)
\(90\) −2.12151 + 7.67826i −0.223627 + 0.809359i
\(91\) 2.47214 0.259150
\(92\) 4.78856i 0.499242i
\(93\) 8.91178 + 1.20853i 0.924108 + 0.125318i
\(94\) 10.0129i 1.03275i
\(95\) 14.5736 1.49522
\(96\) 1.71634 + 0.232753i 0.175173 + 0.0237553i
\(97\) −3.59099 −0.364610 −0.182305 0.983242i \(-0.558356\pi\)
−0.182305 + 0.983242i \(0.558356\pi\)
\(98\) −4.30687 −0.435059
\(99\) 0 0
\(100\) −2.05072 −0.205072
\(101\) −12.1722 −1.21118 −0.605591 0.795776i \(-0.707063\pi\)
−0.605591 + 0.795776i \(0.707063\pi\)
\(102\) 11.6544 + 1.58046i 1.15396 + 0.156488i
\(103\) 0.886596 0.0873589 0.0436795 0.999046i \(-0.486092\pi\)
0.0436795 + 0.999046i \(0.486092\pi\)
\(104\) 1.50641i 0.147716i
\(105\) −7.47910 1.01424i −0.729885 0.0989798i
\(106\) 9.82493i 0.954281i
\(107\) −2.23177 −0.215753 −0.107877 0.994164i \(-0.534405\pi\)
−0.107877 + 0.994164i \(0.534405\pi\)
\(108\) −4.77710 2.04434i −0.459676 0.196717i
\(109\) 4.73524i 0.453554i −0.973947 0.226777i \(-0.927181\pi\)
0.973947 0.226777i \(-0.0728188\pi\)
\(110\) 0 0
\(111\) −1.72829 0.234373i −0.164042 0.0222457i
\(112\) 1.64108i 0.155067i
\(113\) 3.89575i 0.366481i −0.983068 0.183241i \(-0.941341\pi\)
0.983068 0.183241i \(-0.0586588\pi\)
\(114\) −1.27745 + 9.42004i −0.119644 + 0.882268i
\(115\) −12.7152 −1.18570
\(116\) −0.464026 −0.0430837
\(117\) 1.20357 4.35602i 0.111270 0.402714i
\(118\) 6.11223i 0.562676i
\(119\) 11.1433i 1.02151i
\(120\) 0.618034 4.55743i 0.0564185 0.416035i
\(121\) 0 0
\(122\) 13.9034i 1.25876i
\(123\) −2.70200 0.366418i −0.243631 0.0330388i
\(124\) −5.19231 −0.466283
\(125\) 7.83129i 0.700452i
\(126\) 1.31117 4.74542i 0.116808 0.422756i
\(127\) 0.236376i 0.0209749i −0.999945 0.0104875i \(-0.996662\pi\)
0.999945 0.0104875i \(-0.00333833\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −0.797180 + 5.87847i −0.0701878 + 0.517571i
\(130\) 4.00000 0.350823
\(131\) −5.26741 −0.460216 −0.230108 0.973165i \(-0.573908\pi\)
−0.230108 + 0.973165i \(0.573908\pi\)
\(132\) 0 0
\(133\) −9.00696 −0.781002
\(134\) −11.7972 −1.01912
\(135\) −5.42838 + 12.6847i −0.467201 + 1.09173i
\(136\) −6.79026 −0.582260
\(137\) 0.927773i 0.0792650i 0.999214 + 0.0396325i \(0.0126187\pi\)
−0.999214 + 0.0396325i \(0.987381\pi\)
\(138\) 1.11455 8.21881i 0.0948771 0.699632i
\(139\) 8.45318i 0.716990i −0.933532 0.358495i \(-0.883290\pi\)
0.933532 0.358495i \(-0.116710\pi\)
\(140\) 4.35758 0.368283
\(141\) −2.33054 + 17.1856i −0.196267 + 1.44729i
\(142\) 0.898056i 0.0753632i
\(143\) 0 0
\(144\) 2.89165 + 0.798968i 0.240971 + 0.0665807i
\(145\) 1.23214i 0.102323i
\(146\) 4.62724i 0.382953i
\(147\) −7.39205 1.00244i −0.609686 0.0826796i
\(148\) 1.00696 0.0827716
\(149\) −18.0716 −1.48048 −0.740241 0.672341i \(-0.765289\pi\)
−0.740241 + 0.672341i \(0.765289\pi\)
\(150\) −3.51973 0.477311i −0.287385 0.0389723i
\(151\) 13.3299i 1.08477i 0.840129 + 0.542387i \(0.182479\pi\)
−0.840129 + 0.542387i \(0.817521\pi\)
\(152\) 5.48844i 0.445172i
\(153\) 19.6351 + 5.42520i 1.58740 + 0.438602i
\(154\) 0 0
\(155\) 13.7872i 1.10742i
\(156\) −0.350622 + 2.58551i −0.0280722 + 0.207007i
\(157\) 9.70820 0.774799 0.387400 0.921912i \(-0.373373\pi\)
0.387400 + 0.921912i \(0.373373\pi\)
\(158\) 3.17739i 0.252780i
\(159\) −2.28678 + 16.8629i −0.181354 + 1.33732i
\(160\) 2.65532i 0.209921i
\(161\) 7.85840 0.619329
\(162\) −7.72330 4.62067i −0.606800 0.363034i
\(163\) 7.08206 0.554710 0.277355 0.960768i \(-0.410542\pi\)
0.277355 + 0.960768i \(0.410542\pi\)
\(164\) 1.57428 0.122930
\(165\) 0 0
\(166\) −1.87418 −0.145465
\(167\) −2.53482 −0.196151 −0.0980753 0.995179i \(-0.531269\pi\)
−0.0980753 + 0.995179i \(0.531269\pi\)
\(168\) −0.381966 + 2.81665i −0.0294693 + 0.217309i
\(169\) 10.7307 0.825441
\(170\) 18.0303i 1.38286i
\(171\) −4.38509 + 15.8707i −0.335336 + 1.21366i
\(172\) 3.42500i 0.261154i
\(173\) 0.949284 0.0721727 0.0360864 0.999349i \(-0.488511\pi\)
0.0360864 + 0.999349i \(0.488511\pi\)
\(174\) −0.796426 0.108003i −0.0603769 0.00818772i
\(175\) 3.36538i 0.254399i
\(176\) 0 0
\(177\) −1.42264 + 10.4907i −0.106932 + 0.788526i
\(178\) 12.8092i 0.960090i
\(179\) 18.5656i 1.38766i 0.720139 + 0.693830i \(0.244078\pi\)
−0.720139 + 0.693830i \(0.755922\pi\)
\(180\) 2.12151 7.67826i 0.158128 0.572303i
\(181\) 12.8793 0.957310 0.478655 0.878003i \(-0.341125\pi\)
0.478655 + 0.878003i \(0.341125\pi\)
\(182\) −2.47214 −0.183247
\(183\) −3.23607 + 23.8630i −0.239217 + 1.76401i
\(184\) 4.78856i 0.353018i
\(185\) 2.67380i 0.196582i
\(186\) −8.91178 1.20853i −0.653443 0.0886135i
\(187\) 0 0
\(188\) 10.0129i 0.730267i
\(189\) 3.35492 7.83959i 0.244035 0.570246i
\(190\) −14.5736 −1.05728
\(191\) 3.22883i 0.233630i −0.993154 0.116815i \(-0.962732\pi\)
0.993154 0.116815i \(-0.0372684\pi\)
\(192\) −1.71634 0.232753i −0.123866 0.0167975i
\(193\) 9.76512i 0.702909i 0.936205 + 0.351454i \(0.114313\pi\)
−0.936205 + 0.351454i \(0.885687\pi\)
\(194\) 3.59099 0.257818
\(195\) 6.86536 + 0.931013i 0.491639 + 0.0666712i
\(196\) 4.30687 0.307633
\(197\) −13.9679 −0.995175 −0.497587 0.867414i \(-0.665781\pi\)
−0.497587 + 0.867414i \(0.665781\pi\)
\(198\) 0 0
\(199\) 15.9679 1.13194 0.565969 0.824427i \(-0.308502\pi\)
0.565969 + 0.824427i \(0.308502\pi\)
\(200\) 2.05072 0.145007
\(201\) −20.2481 2.74584i −1.42819 0.193677i
\(202\) 12.1722 0.856435
\(203\) 0.761502i 0.0534470i
\(204\) −11.6544 1.58046i −0.815972 0.110654i
\(205\) 4.18021i 0.291959i
\(206\) −0.886596 −0.0617721
\(207\) 3.82591 13.8469i 0.265919 0.962423i
\(208\) 1.50641i 0.104451i
\(209\) 0 0
\(210\) 7.47910 + 1.01424i 0.516107 + 0.0699893i
\(211\) 2.26810i 0.156142i −0.996948 0.0780712i \(-0.975124\pi\)
0.996948 0.0780712i \(-0.0248761\pi\)
\(212\) 9.82493i 0.674779i
\(213\) 0.209025 1.54137i 0.0143222 0.105613i
\(214\) 2.23177 0.152560
\(215\) −9.09447 −0.620238
\(216\) 4.77710 + 2.04434i 0.325040 + 0.139100i
\(217\) 8.52098i 0.578442i
\(218\) 4.73524i 0.320711i
\(219\) −1.07700 + 7.94191i −0.0727772 + 0.536665i
\(220\) 0 0
\(221\) 10.2289i 0.688072i
\(222\) 1.72829 + 0.234373i 0.115995 + 0.0157301i
\(223\) 4.40134 0.294735 0.147368 0.989082i \(-0.452920\pi\)
0.147368 + 0.989082i \(0.452920\pi\)
\(224\) 1.64108i 0.109649i
\(225\) −5.92996 1.63846i −0.395330 0.109230i
\(226\) 3.89575i 0.259142i
\(227\) 12.7334 0.845144 0.422572 0.906329i \(-0.361127\pi\)
0.422572 + 0.906329i \(0.361127\pi\)
\(228\) 1.27745 9.42004i 0.0846014 0.623857i
\(229\) 6.42337 0.424468 0.212234 0.977219i \(-0.431926\pi\)
0.212234 + 0.977219i \(0.431926\pi\)
\(230\) 12.7152 0.838413
\(231\) 0 0
\(232\) 0.464026 0.0304648
\(233\) 16.8103 1.10128 0.550641 0.834742i \(-0.314383\pi\)
0.550641 + 0.834742i \(0.314383\pi\)
\(234\) −1.20357 + 4.35602i −0.0786801 + 0.284762i
\(235\) −26.5875 −1.73438
\(236\) 6.11223i 0.397872i
\(237\) 0.739548 5.45348i 0.0480388 0.354242i
\(238\) 11.1433i 0.722316i
\(239\) 12.0387 0.778722 0.389361 0.921085i \(-0.372696\pi\)
0.389361 + 0.921085i \(0.372696\pi\)
\(240\) −0.618034 + 4.55743i −0.0398939 + 0.294181i
\(241\) 20.5642i 1.32466i 0.749214 + 0.662328i \(0.230432\pi\)
−0.749214 + 0.662328i \(0.769568\pi\)
\(242\) 0 0
\(243\) −12.1803 9.72827i −0.781369 0.624069i
\(244\) 13.9034i 0.890076i
\(245\) 11.4361i 0.730626i
\(246\) 2.70200 + 0.366418i 0.172273 + 0.0233620i
\(247\) 8.26785 0.526071
\(248\) 5.19231 0.329712
\(249\) −3.21674 0.436223i −0.203853 0.0276445i
\(250\) 7.83129i 0.495294i
\(251\) 16.3658i 1.03300i −0.856287 0.516500i \(-0.827234\pi\)
0.856287 0.516500i \(-0.172766\pi\)
\(252\) −1.31117 + 4.74542i −0.0825958 + 0.298934i
\(253\) 0 0
\(254\) 0.236376i 0.0148315i
\(255\) −4.19661 + 30.9462i −0.262802 + 1.93792i
\(256\) 1.00000 0.0625000
\(257\) 8.53623i 0.532475i −0.963907 0.266238i \(-0.914219\pi\)
0.963907 0.266238i \(-0.0857806\pi\)
\(258\) 0.797180 5.87847i 0.0496303 0.365978i
\(259\) 1.65250i 0.102681i
\(260\) −4.00000 −0.248069
\(261\) −1.34180 0.370742i −0.0830554 0.0229483i
\(262\) 5.26741 0.325422
\(263\) 13.5666 0.836553 0.418276 0.908320i \(-0.362634\pi\)
0.418276 + 0.908320i \(0.362634\pi\)
\(264\) 0 0
\(265\) −26.0883 −1.60259
\(266\) 9.00696 0.552252
\(267\) 2.98138 21.9849i 0.182458 1.34546i
\(268\) 11.7972 0.720630
\(269\) 11.8485i 0.722414i 0.932486 + 0.361207i \(0.117635\pi\)
−0.932486 + 0.361207i \(0.882365\pi\)
\(270\) 5.42838 12.6847i 0.330361 0.771967i
\(271\) 21.6515i 1.31523i 0.753352 + 0.657617i \(0.228436\pi\)
−0.753352 + 0.657617i \(0.771564\pi\)
\(272\) 6.79026 0.411720
\(273\) −4.24303 0.575398i −0.256800 0.0348247i
\(274\) 0.927773i 0.0560488i
\(275\) 0 0
\(276\) −1.11455 + 8.21881i −0.0670883 + 0.494714i
\(277\) 4.07356i 0.244756i 0.992484 + 0.122378i \(0.0390521\pi\)
−0.992484 + 0.122378i \(0.960948\pi\)
\(278\) 8.45318i 0.506988i
\(279\) −15.0144 4.14849i −0.898886 0.248364i
\(280\) −4.35758 −0.260415
\(281\) 17.8647 1.06572 0.532858 0.846205i \(-0.321118\pi\)
0.532858 + 0.846205i \(0.321118\pi\)
\(282\) 2.33054 17.1856i 0.138782 1.02339i
\(283\) 3.03967i 0.180690i −0.995911 0.0903448i \(-0.971203\pi\)
0.995911 0.0903448i \(-0.0287969\pi\)
\(284\) 0.898056i 0.0532898i
\(285\) −25.0132 3.39205i −1.48165 0.200927i
\(286\) 0 0
\(287\) 2.58351i 0.152500i
\(288\) −2.89165 0.798968i −0.170392 0.0470796i
\(289\) 29.1077 1.71222
\(290\) 1.23214i 0.0723535i
\(291\) 6.16337 + 0.835815i 0.361303 + 0.0489963i
\(292\) 4.62724i 0.270788i
\(293\) −23.3411 −1.36360 −0.681801 0.731538i \(-0.738803\pi\)
−0.681801 + 0.731538i \(0.738803\pi\)
\(294\) 7.39205 + 1.00244i 0.431113 + 0.0584633i
\(295\) −16.2299 −0.944942
\(296\) −1.00696 −0.0585284
\(297\) 0 0
\(298\) 18.0716 1.04686
\(299\) −7.21355 −0.417170
\(300\) 3.51973 + 0.477311i 0.203212 + 0.0275575i
\(301\) 5.62069 0.323971
\(302\) 13.3299i 0.767051i
\(303\) 20.8917 + 2.83313i 1.20020 + 0.162759i
\(304\) 5.48844i 0.314784i
\(305\) −36.9180 −2.11392
\(306\) −19.6351 5.42520i −1.12246 0.310138i
\(307\) 30.0216i 1.71342i −0.515794 0.856712i \(-0.672503\pi\)
0.515794 0.856712i \(-0.327497\pi\)
\(308\) 0 0
\(309\) −1.52170 0.206358i −0.0865666 0.0117393i
\(310\) 13.7872i 0.783063i
\(311\) 0.495224i 0.0280816i −0.999901 0.0140408i \(-0.995531\pi\)
0.999901 0.0140408i \(-0.00446947\pi\)
\(312\) 0.350622 2.58551i 0.0198501 0.146376i
\(313\) −28.3789 −1.60407 −0.802035 0.597277i \(-0.796249\pi\)
−0.802035 + 0.597277i \(0.796249\pi\)
\(314\) −9.70820 −0.547866
\(315\) 12.6006 + 3.48157i 0.709964 + 0.196164i
\(316\) 3.17739i 0.178742i
\(317\) 6.64071i 0.372979i 0.982457 + 0.186490i \(0.0597111\pi\)
−0.982457 + 0.186490i \(0.940289\pi\)
\(318\) 2.28678 16.8629i 0.128236 0.945626i
\(319\) 0 0
\(320\) 2.65532i 0.148437i
\(321\) 3.83047 + 0.519451i 0.213796 + 0.0289929i
\(322\) −7.85840 −0.437932
\(323\) 37.2680i 2.07365i
\(324\) 7.72330 + 4.62067i 0.429072 + 0.256704i
\(325\) 3.08922i 0.171359i
\(326\) −7.08206 −0.392239
\(327\) −1.10214 + 8.12728i −0.0609486 + 0.449440i
\(328\) −1.57428 −0.0869250
\(329\) 16.4320 0.905924
\(330\) 0 0
\(331\) 7.41016 0.407299 0.203650 0.979044i \(-0.434720\pi\)
0.203650 + 0.979044i \(0.434720\pi\)
\(332\) 1.87418 0.102859
\(333\) 2.91178 + 0.804529i 0.159564 + 0.0440879i
\(334\) 2.53482 0.138699
\(335\) 31.3254i 1.71149i
\(336\) 0.381966 2.81665i 0.0208380 0.153661i
\(337\) 34.2137i 1.86374i −0.362792 0.931870i \(-0.618176\pi\)
0.362792 0.931870i \(-0.381824\pi\)
\(338\) −10.7307 −0.583675
\(339\) −0.906749 + 6.68644i −0.0492478 + 0.363157i
\(340\) 18.0303i 0.977831i
\(341\) 0 0
\(342\) 4.38509 15.8707i 0.237119 0.858188i
\(343\) 18.5554i 1.00190i
\(344\) 3.42500i 0.184664i
\(345\) 21.8236 + 2.95950i 1.17494 + 0.159334i
\(346\) −0.949284 −0.0510338
\(347\) 20.9245 1.12329 0.561644 0.827379i \(-0.310169\pi\)
0.561644 + 0.827379i \(0.310169\pi\)
\(348\) 0.796426 + 0.108003i 0.0426929 + 0.00578960i
\(349\) 29.4529i 1.57658i −0.615306 0.788288i \(-0.710968\pi\)
0.615306 0.788288i \(-0.289032\pi\)
\(350\) 3.36538i 0.179887i
\(351\) −3.07962 + 7.19627i −0.164378 + 0.384109i
\(352\) 0 0
\(353\) 24.3265i 1.29477i −0.762163 0.647385i \(-0.775863\pi\)
0.762163 0.647385i \(-0.224137\pi\)
\(354\) 1.42264 10.4907i 0.0756125 0.557572i
\(355\) 2.38462 0.126563
\(356\) 12.8092i 0.678886i
\(357\) 2.59365 19.1258i 0.137271 1.01224i
\(358\) 18.5656i 0.981224i
\(359\) −32.7277 −1.72730 −0.863650 0.504092i \(-0.831827\pi\)
−0.863650 + 0.504092i \(0.831827\pi\)
\(360\) −2.12151 + 7.67826i −0.111814 + 0.404680i
\(361\) −11.1230 −0.585422
\(362\) −12.8793 −0.676920
\(363\) 0 0
\(364\) 2.47214 0.129575
\(365\) −12.2868 −0.643120
\(366\) 3.23607 23.8630i 0.169152 1.24734i
\(367\) −11.9030 −0.621329 −0.310665 0.950520i \(-0.600552\pi\)
−0.310665 + 0.950520i \(0.600552\pi\)
\(368\) 4.78856i 0.249621i
\(369\) 4.55226 + 1.25780i 0.236981 + 0.0654783i
\(370\) 2.67380i 0.139004i
\(371\) 16.1235 0.837088
\(372\) 8.91178 + 1.20853i 0.462054 + 0.0626592i
\(373\) 27.7804i 1.43841i 0.694796 + 0.719207i \(0.255495\pi\)
−0.694796 + 0.719207i \(0.744505\pi\)
\(374\) 0 0
\(375\) −1.82276 + 13.4412i −0.0941268 + 0.694099i
\(376\) 10.0129i 0.516377i
\(377\) 0.699013i 0.0360010i
\(378\) −3.35492 + 7.83959i −0.172559 + 0.403225i
\(379\) −7.86465 −0.403980 −0.201990 0.979388i \(-0.564741\pi\)
−0.201990 + 0.979388i \(0.564741\pi\)
\(380\) 14.5736 0.747608
\(381\) −0.0550172 + 0.405701i −0.00281862 + 0.0207847i
\(382\) 3.22883i 0.165201i
\(383\) 12.9561i 0.662023i 0.943627 + 0.331012i \(0.107390\pi\)
−0.943627 + 0.331012i \(0.892610\pi\)
\(384\) 1.71634 + 0.232753i 0.0875867 + 0.0118776i
\(385\) 0 0
\(386\) 9.76512i 0.497032i
\(387\) 2.73647 9.90391i 0.139102 0.503444i
\(388\) −3.59099 −0.182305
\(389\) 25.8976i 1.31306i 0.754299 + 0.656531i \(0.227977\pi\)
−0.754299 + 0.656531i \(0.772023\pi\)
\(390\) −6.86536 0.931013i −0.347641 0.0471437i
\(391\) 32.5156i 1.64439i
\(392\) −4.30687 −0.217530
\(393\) 9.04067 + 1.22601i 0.456042 + 0.0618439i
\(394\) 13.9679 0.703695
\(395\) 8.43698 0.424511
\(396\) 0 0
\(397\) −17.9986 −0.903323 −0.451661 0.892189i \(-0.649168\pi\)
−0.451661 + 0.892189i \(0.649168\pi\)
\(398\) −15.9679 −0.800401
\(399\) 15.4590 + 2.09640i 0.773919 + 0.104951i
\(400\) −2.05072 −0.102536
\(401\) 3.76803i 0.188166i −0.995564 0.0940832i \(-0.970008\pi\)
0.995564 0.0940832i \(-0.0299920\pi\)
\(402\) 20.2481 + 2.74584i 1.00988 + 0.136950i
\(403\) 7.82175i 0.389629i
\(404\) −12.1722 −0.605591
\(405\) 12.2694 20.5078i 0.609669 1.01904i
\(406\) 0.761502i 0.0377927i
\(407\) 0 0
\(408\) 11.6544 + 1.58046i 0.576979 + 0.0782442i
\(409\) 14.3741i 0.710752i 0.934724 + 0.355376i \(0.115647\pi\)
−0.934724 + 0.355376i \(0.884353\pi\)
\(410\) 4.18021i 0.206446i
\(411\) 0.215942 1.59237i 0.0106516 0.0785461i
\(412\) 0.886596 0.0436795
\(413\) 10.0306 0.493575
\(414\) −3.82591 + 13.8469i −0.188033 + 0.680536i
\(415\) 4.97656i 0.244290i
\(416\) 1.50641i 0.0738579i
\(417\) −1.96751 + 14.5085i −0.0963492 + 0.710486i
\(418\) 0 0
\(419\) 31.1601i 1.52227i −0.648595 0.761134i \(-0.724643\pi\)
0.648595 0.761134i \(-0.275357\pi\)
\(420\) −7.47910 1.01424i −0.364943 0.0494899i
\(421\) −10.8166 −0.527169 −0.263584 0.964636i \(-0.584905\pi\)
−0.263584 + 0.964636i \(0.584905\pi\)
\(422\) 2.26810i 0.110409i
\(423\) 8.00000 28.9539i 0.388973 1.40779i
\(424\) 9.82493i 0.477141i
\(425\) −13.9249 −0.675457
\(426\) −0.209025 + 1.54137i −0.0101273 + 0.0746796i
\(427\) 22.8166 1.10417
\(428\) −2.23177 −0.107877
\(429\) 0 0
\(430\) 9.09447 0.438574
\(431\) 39.8322 1.91865 0.959324 0.282308i \(-0.0911001\pi\)
0.959324 + 0.282308i \(0.0911001\pi\)
\(432\) −4.77710 2.04434i −0.229838 0.0983585i
\(433\) 16.1553 0.776374 0.388187 0.921581i \(-0.373101\pi\)
0.388187 + 0.921581i \(0.373101\pi\)
\(434\) 8.52098i 0.409020i
\(435\) 0.286784 2.11477i 0.0137502 0.101395i
\(436\) 4.73524i 0.226777i
\(437\) 26.2818 1.25723
\(438\) 1.07700 7.94191i 0.0514612 0.379479i
\(439\) 6.13994i 0.293043i −0.989207 0.146522i \(-0.953192\pi\)
0.989207 0.146522i \(-0.0468078\pi\)
\(440\) 0 0
\(441\) 12.4540 + 3.44105i 0.593046 + 0.163859i
\(442\) 10.2289i 0.486540i
\(443\) 1.63784i 0.0778160i 0.999243 + 0.0389080i \(0.0123879\pi\)
−0.999243 + 0.0389080i \(0.987612\pi\)
\(444\) −1.72829 0.234373i −0.0820208 0.0111229i
\(445\) 34.0125 1.61235
\(446\) −4.40134 −0.208409
\(447\) 31.0170 + 4.20622i 1.46705 + 0.198948i
\(448\) 1.64108i 0.0775336i
\(449\) 18.2818i 0.862772i 0.902167 + 0.431386i \(0.141975\pi\)
−0.902167 + 0.431386i \(0.858025\pi\)
\(450\) 5.92996 + 1.63846i 0.279541 + 0.0772376i
\(451\) 0 0
\(452\) 3.89575i 0.183241i
\(453\) 3.10258 22.8787i 0.145772 1.07493i
\(454\) −12.7334 −0.597607
\(455\) 6.56431i 0.307740i
\(456\) −1.27745 + 9.42004i −0.0598222 + 0.441134i
\(457\) 27.9848i 1.30907i 0.756031 + 0.654536i \(0.227136\pi\)
−0.756031 + 0.654536i \(0.772864\pi\)
\(458\) −6.42337 −0.300144
\(459\) −32.4378 13.8816i −1.51406 0.647939i
\(460\) −12.7152 −0.592848
\(461\) 30.3359 1.41288 0.706441 0.707772i \(-0.250300\pi\)
0.706441 + 0.707772i \(0.250300\pi\)
\(462\) 0 0
\(463\) −10.9632 −0.509503 −0.254752 0.967007i \(-0.581994\pi\)
−0.254752 + 0.967007i \(0.581994\pi\)
\(464\) −0.464026 −0.0215419
\(465\) 3.20903 23.6636i 0.148815 1.09737i
\(466\) −16.8103 −0.778724
\(467\) 32.2185i 1.49089i 0.666565 + 0.745447i \(0.267764\pi\)
−0.666565 + 0.745447i \(0.732236\pi\)
\(468\) 1.20357 4.35602i 0.0556352 0.201357i
\(469\) 19.3602i 0.893969i
\(470\) 26.5875 1.22639
\(471\) −16.6626 2.25962i −0.767771 0.104118i
\(472\) 6.11223i 0.281338i
\(473\) 0 0
\(474\) −0.739548 + 5.45348i −0.0339686 + 0.250487i
\(475\) 11.2552i 0.516426i
\(476\) 11.1433i 0.510754i
\(477\) 7.84980 28.4103i 0.359418 1.30082i
\(478\) −12.0387 −0.550639
\(479\) −18.8328 −0.860493 −0.430247 0.902711i \(-0.641573\pi\)
−0.430247 + 0.902711i \(0.641573\pi\)
\(480\) 0.618034 4.55743i 0.0282093 0.208017i
\(481\) 1.51690i 0.0691645i
\(482\) 20.5642i 0.936674i
\(483\) −13.4877 1.82907i −0.613712 0.0832255i
\(484\) 0 0
\(485\) 9.53523i 0.432972i
\(486\) 12.1803 + 9.72827i 0.552511 + 0.441283i
\(487\) −26.8604 −1.21716 −0.608579 0.793493i \(-0.708260\pi\)
−0.608579 + 0.793493i \(0.708260\pi\)
\(488\) 13.9034i 0.629379i
\(489\) −12.1552 1.64837i −0.549678 0.0745420i
\(490\) 11.4361i 0.516630i
\(491\) −19.0395 −0.859239 −0.429619 0.903010i \(-0.641352\pi\)
−0.429619 + 0.903010i \(0.641352\pi\)
\(492\) −2.70200 0.366418i −0.121815 0.0165194i
\(493\) −3.15086 −0.141907
\(494\) −8.26785 −0.371988
\(495\) 0 0
\(496\) −5.19231 −0.233142
\(497\) −1.47378 −0.0661080
\(498\) 3.21674 + 0.436223i 0.144146 + 0.0195476i
\(499\) 10.6200 0.475416 0.237708 0.971337i \(-0.423604\pi\)
0.237708 + 0.971337i \(0.423604\pi\)
\(500\) 7.83129i 0.350226i
\(501\) 4.35062 + 0.589989i 0.194371 + 0.0263587i
\(502\) 16.3658i 0.730442i
\(503\) −30.9691 −1.38084 −0.690422 0.723407i \(-0.742575\pi\)
−0.690422 + 0.723407i \(0.742575\pi\)
\(504\) 1.31117 4.74542i 0.0584041 0.211378i
\(505\) 32.3211i 1.43827i
\(506\) 0 0
\(507\) −18.4176 2.49761i −0.817954 0.110923i
\(508\) 0.236376i 0.0104875i
\(509\) 20.5756i 0.911995i 0.889981 + 0.455998i \(0.150717\pi\)
−0.889981 + 0.455998i \(0.849283\pi\)
\(510\) 4.19661 30.9462i 0.185829 1.37032i
\(511\) 7.59365 0.335923
\(512\) −1.00000 −0.0441942
\(513\) 11.2203 26.2188i 0.495387 1.15759i
\(514\) 8.53623i 0.376517i
\(515\) 2.35420i 0.103738i
\(516\) −0.797180 + 5.87847i −0.0350939 + 0.258785i
\(517\) 0 0
\(518\) 1.65250i 0.0726066i
\(519\) −1.62930 0.220949i −0.0715181 0.00969859i
\(520\) 4.00000 0.175412
\(521\) 3.82984i 0.167788i 0.996475 + 0.0838941i \(0.0267357\pi\)
−0.996475 + 0.0838941i \(0.973264\pi\)
\(522\) 1.34180 + 0.370742i 0.0587290 + 0.0162269i
\(523\) 9.63169i 0.421165i 0.977576 + 0.210582i \(0.0675360\pi\)
−0.977576 + 0.210582i \(0.932464\pi\)
\(524\) −5.26741 −0.230108
\(525\) −0.783304 + 5.77614i −0.0341862 + 0.252092i
\(526\) −13.5666 −0.591532
\(527\) −35.2572 −1.53583
\(528\) 0 0
\(529\) 0.0696480 0.00302817
\(530\) 26.0883 1.13320
\(531\) 4.88347 17.6744i 0.211925 0.767005i
\(532\) −9.00696 −0.390501
\(533\) 2.37151i 0.102721i
\(534\) −2.98138 + 21.9849i −0.129017 + 0.951382i
\(535\) 5.92605i 0.256206i
\(536\) −11.7972 −0.509562
\(537\) 4.32121 31.8649i 0.186474 1.37507i
\(538\) 11.8485i 0.510824i
\(539\) 0 0
\(540\) −5.42838 + 12.6847i −0.233600 + 0.545863i
\(541\) 2.78903i 0.119910i −0.998201 0.0599550i \(-0.980904\pi\)
0.998201 0.0599550i \(-0.0190957\pi\)
\(542\) 21.6515i 0.930011i
\(543\) −22.1052 2.99770i −0.948627 0.128643i
\(544\) −6.79026 −0.291130
\(545\) −12.5736 −0.538592
\(546\) 4.24303 + 0.575398i 0.181585 + 0.0246247i
\(547\) 33.1227i 1.41623i 0.706099 + 0.708113i \(0.250453\pi\)
−0.706099 + 0.708113i \(0.749547\pi\)
\(548\) 0.927773i 0.0396325i
\(549\) 11.1084 40.2039i 0.474095 1.71586i
\(550\) 0 0
\(551\) 2.54678i 0.108496i
\(552\) 1.11455 8.21881i 0.0474386 0.349816i
\(553\) −5.21434 −0.221736
\(554\) 4.07356i 0.173069i
\(555\) −0.622335 + 4.58915i −0.0264167 + 0.194799i
\(556\) 8.45318i 0.358495i
\(557\) 27.4015 1.16104 0.580519 0.814247i \(-0.302850\pi\)
0.580519 + 0.814247i \(0.302850\pi\)
\(558\) 15.0144 + 4.14849i 0.635609 + 0.175620i
\(559\) −5.15946 −0.218222
\(560\) 4.35758 0.184141
\(561\) 0 0
\(562\) −17.8647 −0.753575
\(563\) −21.2562 −0.895844 −0.447922 0.894073i \(-0.647836\pi\)
−0.447922 + 0.894073i \(0.647836\pi\)
\(564\) −2.33054 + 17.1856i −0.0981334 + 0.723644i
\(565\) −10.3445 −0.435195
\(566\) 3.03967i 0.127767i
\(567\) −7.58288 + 12.6745i −0.318451 + 0.532280i
\(568\) 0.898056i 0.0376816i
\(569\) 36.9079 1.54726 0.773630 0.633637i \(-0.218439\pi\)
0.773630 + 0.633637i \(0.218439\pi\)
\(570\) 25.0132 + 3.39205i 1.04769 + 0.142077i
\(571\) 26.4505i 1.10692i −0.832876 0.553460i \(-0.813307\pi\)
0.832876 0.553460i \(-0.186693\pi\)
\(572\) 0 0
\(573\) −0.751520 + 5.54177i −0.0313952 + 0.231511i
\(574\) 2.58351i 0.107834i
\(575\) 9.81998i 0.409522i
\(576\) 2.89165 + 0.798968i 0.120485 + 0.0332903i
\(577\) −24.4912 −1.01958 −0.509790 0.860299i \(-0.670277\pi\)
−0.509790 + 0.860299i \(0.670277\pi\)
\(578\) −29.1077 −1.21072
\(579\) 2.27286 16.7603i 0.0944570 0.696533i
\(580\) 1.23214i 0.0511617i
\(581\) 3.07568i 0.127601i
\(582\) −6.16337 0.835815i −0.255480 0.0346456i
\(583\) 0 0
\(584\) 4.62724i 0.191476i
\(585\) −11.5666 3.19587i −0.478220 0.132133i
\(586\) 23.3411 0.964212
\(587\) 41.4212i 1.70964i −0.518927 0.854819i \(-0.673668\pi\)
0.518927 0.854819i \(-0.326332\pi\)
\(588\) −7.39205 1.00244i −0.304843 0.0413398i
\(589\) 28.4977i 1.17423i
\(590\) 16.2299 0.668175
\(591\) 23.9738 + 3.25108i 0.986148 + 0.133732i
\(592\) 1.00696 0.0413858
\(593\) −2.94808 −0.121063 −0.0605316 0.998166i \(-0.519280\pi\)
−0.0605316 + 0.998166i \(0.519280\pi\)
\(594\) 0 0
\(595\) 29.5891 1.21304
\(596\) −18.0716 −0.740241
\(597\) −27.4064 3.71659i −1.12167 0.152110i
\(598\) 7.21355 0.294984
\(599\) 27.7430i 1.13355i 0.823873 + 0.566775i \(0.191809\pi\)
−0.823873 + 0.566775i \(0.808191\pi\)
\(600\) −3.51973 0.477311i −0.143692 0.0194861i
\(601\) 4.44136i 0.181167i 0.995889 + 0.0905834i \(0.0288732\pi\)
−0.995889 + 0.0905834i \(0.971127\pi\)
\(602\) −5.62069 −0.229082
\(603\) 34.1135 + 9.42560i 1.38921 + 0.383840i
\(604\) 13.3299i 0.542387i
\(605\) 0 0
\(606\) −20.8917 2.83313i −0.848667 0.115088i
\(607\) 40.6397i 1.64951i −0.565488 0.824756i \(-0.691312\pi\)
0.565488 0.824756i \(-0.308688\pi\)
\(608\) 5.48844i 0.222586i
\(609\) −0.177242 + 1.30700i −0.00718221 + 0.0529622i
\(610\) 36.9180 1.49477
\(611\) −15.0836 −0.610216
\(612\) 19.6351 + 5.42520i 0.793701 + 0.219301i
\(613\) 28.8714i 1.16610i 0.812435 + 0.583052i \(0.198142\pi\)
−0.812435 + 0.583052i \(0.801858\pi\)
\(614\) 30.0216i 1.21157i
\(615\) −0.972957 + 7.17467i −0.0392334 + 0.289310i
\(616\) 0 0
\(617\) 31.6428i 1.27389i 0.770909 + 0.636946i \(0.219802\pi\)
−0.770909 + 0.636946i \(0.780198\pi\)
\(618\) 1.52170 + 0.206358i 0.0612118 + 0.00830094i
\(619\) 0.954383 0.0383599 0.0191799 0.999816i \(-0.493894\pi\)
0.0191799 + 0.999816i \(0.493894\pi\)
\(620\) 13.7872i 0.553709i
\(621\) −9.78947 + 22.8754i −0.392838 + 0.917960i
\(622\) 0.495224i 0.0198567i
\(623\) −21.0209 −0.842184
\(624\) −0.350622 + 2.58551i −0.0140361 + 0.103503i
\(625\) −31.0481 −1.24193
\(626\) 28.3789 1.13425
\(627\) 0 0
\(628\) 9.70820 0.387400
\(629\) 6.83752 0.272630
\(630\) −12.6006 3.48157i −0.502020 0.138709i
\(631\) 7.11650 0.283303 0.141652 0.989917i \(-0.454759\pi\)
0.141652 + 0.989917i \(0.454759\pi\)
\(632\) 3.17739i 0.126390i
\(633\) −0.527907 + 3.89283i −0.0209824 + 0.154726i
\(634\) 6.64071i 0.263736i
\(635\) −0.627652 −0.0249076
\(636\) −2.28678 + 16.8629i −0.0906769 + 0.668658i
\(637\) 6.48791i 0.257060i
\(638\) 0 0
\(639\) −0.717518 + 2.59687i −0.0283846 + 0.102730i
\(640\) 2.65532i 0.104961i
\(641\) 32.8449i 1.29730i 0.761088 + 0.648648i \(0.224665\pi\)
−0.761088 + 0.648648i \(0.775335\pi\)
\(642\) −3.83047 0.519451i −0.151177 0.0205011i
\(643\) 3.29640 0.129997 0.0649987 0.997885i \(-0.479296\pi\)
0.0649987 + 0.997885i \(0.479296\pi\)
\(644\) 7.85840 0.309664
\(645\) 15.6092 + 2.11677i 0.614612 + 0.0833477i
\(646\) 37.2680i 1.46629i
\(647\) 5.82245i 0.228904i −0.993429 0.114452i \(-0.963489\pi\)
0.993429 0.114452i \(-0.0365113\pi\)
\(648\) −7.72330 4.62067i −0.303400 0.181517i
\(649\) 0 0
\(650\) 3.08922i 0.121169i
\(651\) −1.98329 + 14.6249i −0.0777311 + 0.573196i
\(652\) 7.08206 0.277355
\(653\) 4.37774i 0.171314i 0.996325 + 0.0856570i \(0.0272989\pi\)
−0.996325 + 0.0856570i \(0.972701\pi\)
\(654\) 1.10214 8.12728i 0.0430972 0.317802i
\(655\) 13.9867i 0.546504i
\(656\) 1.57428 0.0614652
\(657\) 3.69701 13.3804i 0.144234 0.522017i
\(658\) −16.4320 −0.640585
\(659\) 15.3805 0.599141 0.299570 0.954074i \(-0.403157\pi\)
0.299570 + 0.954074i \(0.403157\pi\)
\(660\) 0 0
\(661\) 12.6047 0.490266 0.245133 0.969489i \(-0.421168\pi\)
0.245133 + 0.969489i \(0.421168\pi\)
\(662\) −7.41016 −0.288004
\(663\) −2.38082 + 17.5563i −0.0924632 + 0.681831i
\(664\) −1.87418 −0.0727325
\(665\) 23.9163i 0.927436i
\(666\) −2.91178 0.804529i −0.112829 0.0311749i
\(667\) 2.22202i 0.0860369i
\(668\) −2.53482 −0.0980753
\(669\) −7.55420 1.02443i −0.292062 0.0396066i
\(670\) 31.3254i 1.21021i
\(671\) 0 0
\(672\) −0.381966 + 2.81665i −0.0147347 + 0.108655i
\(673\) 32.2330i 1.24249i 0.783615 + 0.621246i \(0.213373\pi\)
−0.783615 + 0.621246i \(0.786627\pi\)
\(674\) 34.2137i 1.31786i
\(675\) 9.79647 + 4.19237i 0.377066 + 0.161364i
\(676\) 10.7307 0.412720
\(677\) −9.11198 −0.350202 −0.175101 0.984550i \(-0.556025\pi\)
−0.175101 + 0.984550i \(0.556025\pi\)
\(678\) 0.906749 6.68644i 0.0348235 0.256791i
\(679\) 5.89309i 0.226156i
\(680\) 18.0303i 0.691431i
\(681\) −21.8548 2.96374i −0.837479 0.113571i
\(682\) 0 0
\(683\) 28.1535i 1.07726i 0.842541 + 0.538632i \(0.181059\pi\)
−0.842541 + 0.538632i \(0.818941\pi\)
\(684\) −4.38509 + 15.8707i −0.167668 + 0.606830i
\(685\) 2.46353 0.0941268
\(686\) 18.5554i 0.708450i
\(687\) −11.0247 1.49506i −0.420618 0.0570401i
\(688\) 3.42500i 0.130577i
\(689\) −14.8004 −0.563849
\(690\) −21.8236 2.95950i −0.830809 0.112666i
\(691\) 10.7376 0.408478 0.204239 0.978921i \(-0.434528\pi\)
0.204239 + 0.978921i \(0.434528\pi\)
\(692\) 0.949284 0.0360864
\(693\) 0 0
\(694\) −20.9245 −0.794285
\(695\) −22.4459 −0.851421
\(696\) −0.796426 0.108003i −0.0301885 0.00409386i
\(697\) 10.6898 0.404904
\(698\) 29.4529i 1.11481i
\(699\) −28.8523 3.91266i −1.09129 0.147990i
\(700\) 3.36538i 0.127199i
\(701\) −41.5341 −1.56872 −0.784360 0.620306i \(-0.787008\pi\)
−0.784360 + 0.620306i \(0.787008\pi\)
\(702\) 3.07962 7.19627i 0.116233 0.271606i
\(703\) 5.52664i 0.208441i
\(704\) 0 0
\(705\) 45.6332 + 6.18832i 1.71865 + 0.233066i
\(706\) 24.3265i 0.915541i
\(707\) 19.9756i 0.751258i
\(708\) −1.42264 + 10.4907i −0.0534661 + 0.394263i
\(709\) 30.2145 1.13473 0.567364 0.823467i \(-0.307963\pi\)
0.567364 + 0.823467i \(0.307963\pi\)
\(710\) −2.38462 −0.0894934
\(711\) −2.53863 + 9.18791i −0.0952062 + 0.344573i
\(712\) 12.8092i 0.480045i
\(713\) 24.8637i 0.931154i
\(714\) −2.59365 + 19.1258i −0.0970649 + 0.715764i
\(715\) 0 0
\(716\) 18.5656i 0.693830i
\(717\) −20.6626 2.80206i −0.771658 0.104645i
\(718\) 32.7277 1.22139
\(719\) 50.2334i 1.87339i 0.350148 + 0.936695i \(0.386131\pi\)
−0.350148 + 0.936695i \(0.613869\pi\)
\(720\) 2.12151 7.67826i 0.0790642 0.286152i
\(721\) 1.45497i 0.0541860i
\(722\) 11.1230 0.413956
\(723\) 4.78639 35.2952i 0.178008 1.31264i
\(724\) 12.8793 0.478655
\(725\) 0.951585 0.0353410
\(726\) 0 0
\(727\) 42.9707 1.59369 0.796847 0.604181i \(-0.206499\pi\)
0.796847 + 0.604181i \(0.206499\pi\)
\(728\) −2.47214 −0.0916235
\(729\) 18.6413 + 19.5320i 0.690420 + 0.723409i
\(730\) 12.2868 0.454754
\(731\) 23.2567i 0.860179i
\(732\) −3.23607 + 23.8630i −0.119609 + 0.882003i
\(733\) 34.4677i 1.27309i 0.771238 + 0.636547i \(0.219638\pi\)
−0.771238 + 0.636547i \(0.780362\pi\)
\(734\) 11.9030 0.439346
\(735\) −2.66179 + 19.6282i −0.0981816 + 0.723999i
\(736\) 4.78856i 0.176509i
\(737\) 0 0
\(738\) −4.55226 1.25780i −0.167571 0.0463002i
\(739\) 1.13944i 0.0419151i 0.999780 + 0.0209576i \(0.00667149\pi\)
−0.999780 + 0.0209576i \(0.993329\pi\)
\(740\) 2.67380i 0.0982908i
\(741\) −14.1905 1.92437i −0.521299 0.0706935i
\(742\) −16.1235 −0.591911
\(743\) −14.6641 −0.537973 −0.268987 0.963144i \(-0.586689\pi\)
−0.268987 + 0.963144i \(0.586689\pi\)
\(744\) −8.91178 1.20853i −0.326722 0.0443068i
\(745\) 47.9858i 1.75807i
\(746\) 27.7804i 1.01711i
\(747\) 5.41949 + 1.49741i 0.198289 + 0.0547875i
\(748\) 0 0
\(749\) 3.66250i 0.133825i
\(750\) 1.82276 13.4412i 0.0665577 0.490802i
\(751\) −30.7152 −1.12081 −0.560406 0.828218i \(-0.689355\pi\)
−0.560406 + 0.828218i \(0.689355\pi\)
\(752\) 10.0129i 0.365134i
\(753\) −3.80920 + 28.0893i −0.138815 + 1.02363i
\(754\) 0.699013i 0.0254566i
\(755\) 35.3952 1.28816
\(756\) 3.35492 7.83959i 0.122017 0.285123i
\(757\) 36.8080 1.33781 0.668905 0.743348i \(-0.266763\pi\)
0.668905 + 0.743348i \(0.266763\pi\)
\(758\) 7.86465 0.285657
\(759\) 0 0
\(760\) −14.5736 −0.528639
\(761\) −17.7995 −0.645232 −0.322616 0.946530i \(-0.604562\pi\)
−0.322616 + 0.946530i \(0.604562\pi\)
\(762\) 0.0550172 0.405701i 0.00199306 0.0146970i
\(763\) 7.77089 0.281325
\(764\) 3.22883i 0.116815i
\(765\) 14.4056 52.1374i 0.520837 1.88503i
\(766\) 12.9561i 0.468121i
\(767\) −9.20752 −0.332464
\(768\) −1.71634 0.232753i −0.0619331 0.00839876i
\(769\) 15.5249i 0.559841i −0.960023 0.279920i \(-0.909692\pi\)
0.960023 0.279920i \(-0.0903081\pi\)
\(770\) 0 0
\(771\) −1.98683 + 14.6511i −0.0715541 + 0.527645i
\(772\) 9.76512i 0.351454i
\(773\) 34.8051i 1.25185i 0.779883 + 0.625926i \(0.215279\pi\)
−0.779883 + 0.625926i \(0.784721\pi\)
\(774\) −2.73647 + 9.90391i −0.0983603 + 0.355989i
\(775\) 10.6480 0.382486
\(776\) 3.59099 0.128909
\(777\) 0.384624 2.83625i 0.0137983 0.101750i
\(778\) 25.8976i 0.928474i
\(779\) 8.64034i 0.309572i
\(780\) 6.86536 + 0.931013i 0.245819 + 0.0333356i
\(781\) 0 0
\(782\) 32.5156i 1.16276i
\(783\) 2.21670 + 0.948628i 0.0792183 + 0.0339012i
\(784\) 4.30687 0.153817
\(785\) 25.7784i 0.920070i
\(786\) −9.04067 1.22601i −0.322470 0.0437302i
\(787\) 18.8902i 0.673362i −0.941619 0.336681i \(-0.890696\pi\)
0.941619 0.336681i \(-0.109304\pi\)
\(788\) −13.9679 −0.497587
\(789\) −23.2849 3.15767i −0.828965 0.112416i
\(790\) −8.43698 −0.300174
\(791\) 6.39323 0.227317
\(792\) 0 0
\(793\) −20.9443 −0.743753
\(794\) 17.9986 0.638746
\(795\) 44.7764 + 6.07214i 1.58806 + 0.215357i
\(796\) 15.9679 0.565969
\(797\) 45.2566i 1.60307i −0.597947 0.801535i \(-0.704017\pi\)
0.597947 0.801535i \(-0.295983\pi\)
\(798\) −15.4590 2.09640i −0.547243 0.0742117i
\(799\) 67.9904i 2.40533i
\(800\) 2.05072 0.0725037
\(801\) −10.2341 + 37.0397i −0.361605 + 1.30873i
\(802\) 3.76803i 0.133054i
\(803\) 0 0
\(804\) −20.2481 2.74584i −0.714094 0.0968384i
\(805\) 20.8666i 0.735450i
\(806\) 7.82175i 0.275510i
\(807\) 2.75777 20.3360i 0.0970781 0.715861i
\(808\) 12.1722 0.428218
\(809\) −24.4669 −0.860211 −0.430105 0.902779i \(-0.641524\pi\)
−0.430105 + 0.902779i \(0.641524\pi\)
\(810\) −12.2694 + 20.5078i −0.431101 + 0.720571i
\(811\) 12.1210i 0.425627i 0.977093 + 0.212814i \(0.0682627\pi\)
−0.977093 + 0.212814i \(0.931737\pi\)
\(812\) 0.761502i 0.0267235i
\(813\) 5.03945 37.1613i 0.176741 1.30330i
\(814\) 0 0
\(815\) 18.8051i 0.658715i
\(816\) −11.6544 1.58046i −0.407986 0.0553270i
\(817\) 18.7979 0.657656
\(818\) 14.3741i 0.502577i
\(819\) 7.14856 + 1.97516i 0.249791 + 0.0690176i
\(820\) 4.18021i 0.145979i
\(821\) 38.6073 1.34740 0.673702 0.739003i \(-0.264703\pi\)
0.673702 + 0.739003i \(0.264703\pi\)
\(822\) −0.215942 + 1.59237i −0.00753185 + 0.0555405i
\(823\) −7.14045 −0.248900 −0.124450 0.992226i \(-0.539717\pi\)
−0.124450 + 0.992226i \(0.539717\pi\)
\(824\) −0.886596 −0.0308860
\(825\) 0 0
\(826\) −10.0306 −0.349010
\(827\) −14.4318 −0.501841 −0.250921 0.968008i \(-0.580733\pi\)
−0.250921 + 0.968008i \(0.580733\pi\)
\(828\) 3.82591 13.8469i 0.132960 0.481212i
\(829\) −55.6805 −1.93386 −0.966932 0.255032i \(-0.917914\pi\)
−0.966932 + 0.255032i \(0.917914\pi\)
\(830\) 4.97656i 0.172739i
\(831\) 0.948134 6.99162i 0.0328904 0.242536i
\(832\) 1.50641i 0.0522254i
\(833\) 29.2448 1.01327
\(834\) 1.96751 14.5085i 0.0681292 0.502390i
\(835\) 6.73076i 0.232928i
\(836\) 0 0
\(837\) 24.8042 + 10.6149i 0.857358 + 0.366903i
\(838\) 31.1601i 1.07641i
\(839\) 41.3981i 1.42922i −0.699522 0.714611i \(-0.746604\pi\)
0.699522 0.714611i \(-0.253396\pi\)
\(840\) 7.47910 + 1.01424i 0.258053 + 0.0349947i
\(841\) −28.7847 −0.992575
\(842\) 10.8166 0.372764
\(843\) −30.6618 4.15806i −1.05605 0.143211i
\(844\) 2.26810i 0.0780712i
\(845\) 28.4935i 0.980206i
\(846\) −8.00000 + 28.9539i −0.275046 + 0.995455i
\(847\) 0 0
\(848\) 9.82493i 0.337389i
\(849\) −0.707493 + 5.21711i −0.0242811 + 0.179051i
\(850\) 13.9249 0.477620
\(851\) 4.82189i 0.165292i
\(852\) 0.209025 1.54137i 0.00716109 0.0528065i
\(853\) 37.3680i 1.27946i 0.768602 + 0.639728i \(0.220953\pi\)
−0.768602 + 0.639728i \(0.779047\pi\)
\(854\) −22.8166 −0.780768
\(855\) 42.1417 + 11.6438i 1.44122 + 0.398210i
\(856\) 2.23177 0.0762802
\(857\) −34.9831 −1.19500 −0.597499 0.801869i \(-0.703839\pi\)
−0.597499 + 0.801869i \(0.703839\pi\)
\(858\) 0 0
\(859\) 3.21505 0.109696 0.0548481 0.998495i \(-0.482533\pi\)
0.0548481 + 0.998495i \(0.482533\pi\)
\(860\) −9.09447 −0.310119
\(861\) 0.601321 4.43419i 0.0204930 0.151117i
\(862\) −39.8322 −1.35669
\(863\) 45.2723i 1.54109i 0.637388 + 0.770543i \(0.280015\pi\)
−0.637388 + 0.770543i \(0.719985\pi\)
\(864\) 4.77710 + 2.04434i 0.162520 + 0.0695499i
\(865\) 2.52065i 0.0857047i
\(866\) −16.1553 −0.548979
\(867\) −49.9587 6.77491i −1.69669 0.230088i
\(868\) 8.52098i 0.289221i
\(869\) 0 0
\(870\) −0.286784 + 2.11477i −0.00972288 + 0.0716973i
\(871\) 17.7715i 0.602163i
\(872\) 4.73524i 0.160355i
\(873\) −10.3839 2.86909i −0.351442 0.0971039i
\(874\) −26.2818 −0.888994
\(875\) 12.8517 0.434468
\(876\) −1.07700 + 7.94191i −0.0363886 + 0.268332i
\(877\) 47.7756i 1.61327i −0.591052 0.806634i \(-0.701287\pi\)
0.591052 0.806634i \(-0.298713\pi\)
\(878\) 6.13994i 0.207213i
\(879\) 40.0613 + 5.43271i 1.35123 + 0.183241i
\(880\) 0 0
\(881\) 34.4685i 1.16127i −0.814163 0.580636i \(-0.802804\pi\)
0.814163 0.580636i \(-0.197196\pi\)
\(882\) −12.4540 3.44105i −0.419347 0.115866i
\(883\) −37.1200 −1.24919 −0.624593 0.780950i \(-0.714735\pi\)
−0.624593 + 0.780950i \(0.714735\pi\)
\(884\) 10.2289i 0.344036i
\(885\) 27.8560 + 3.77756i 0.936371 + 0.126981i
\(886\) 1.63784i 0.0550242i
\(887\) 42.9793 1.44310 0.721552 0.692361i \(-0.243429\pi\)
0.721552 + 0.692361i \(0.243429\pi\)
\(888\) 1.72829 + 0.234373i 0.0579975 + 0.00786505i
\(889\) 0.387911 0.0130101
\(890\) −34.0125 −1.14010
\(891\) 0 0
\(892\) 4.40134 0.147368
\(893\) 54.9553 1.83901
\(894\) −31.0170 4.20622i −1.03736 0.140677i
\(895\) 49.2976 1.64784
\(896\) 1.64108i 0.0548245i
\(897\) 12.3809 + 1.67898i 0.413386 + 0.0560594i
\(898\) 18.2818i 0.610072i
\(899\) 2.40937 0.0803569
\(900\) −5.92996 1.63846i −0.197665 0.0546152i
\(901\) 66.7138i 2.22256i
\(902\) 0 0
\(903\) −9.64702 1.30823i −0.321033 0.0435353i
\(904\) 3.89575i 0.129571i
\(905\) 34.1986i 1.13680i
\(906\) −3.10258 + 22.8787i −0.103076 + 0.760093i
\(907\) −37.8374 −1.25637 −0.628185 0.778064i \(-0.716202\pi\)
−0.628185 + 0.778064i \(0.716202\pi\)
\(908\) 12.7334 0.422572
\(909\) −35.1979 9.72522i −1.16744 0.322565i
\(910\) 6.56431i 0.217605i
\(911\) 20.3155i 0.673084i −0.941668 0.336542i \(-0.890743\pi\)
0.941668 0.336542i \(-0.109257\pi\)
\(912\) 1.27745 9.42004i 0.0423007 0.311929i
\(913\) 0 0
\(914\) 27.9848i 0.925654i
\(915\) 63.3639 + 8.59279i 2.09475 + 0.284069i
\(916\) 6.42337 0.212234
\(917\) 8.64423i 0.285458i
\(918\) 32.4378 + 13.8816i 1.07061 + 0.458162i
\(919\) 33.3847i 1.10126i −0.834749 0.550630i \(-0.814388\pi\)
0.834749 0.550630i \(-0.185612\pi\)
\(920\) 12.7152 0.419207
\(921\) −6.98763 + 51.5273i −0.230250 + 1.69788i
\(922\) −30.3359 −0.999058
\(923\) 1.35284 0.0445293
\(924\) 0 0
\(925\) −2.06499 −0.0678964
\(926\) 10.9632 0.360273
\(927\) 2.56373 + 0.708362i 0.0842039 + 0.0232657i
\(928\) 0.464026 0.0152324
\(929\) 23.5418i 0.772382i −0.922419 0.386191i \(-0.873790\pi\)
0.922419 0.386191i \(-0.126210\pi\)
\(930\) −3.20903 + 23.6636i −0.105228 + 0.775960i
\(931\) 23.6380i 0.774704i
\(932\) 16.8103 0.550641
\(933\) −0.115265 + 0.849973i −0.00377360 + 0.0278269i
\(934\) 32.2185i 1.05422i
\(935\) 0 0
\(936\) −1.20357 + 4.35602i −0.0393400 + 0.142381i
\(937\) 24.8579i 0.812073i −0.913857 0.406036i \(-0.866911\pi\)
0.913857 0.406036i \(-0.133089\pi\)
\(938\) 19.3602i 0.632131i
\(939\) 48.7079 + 6.60528i 1.58952 + 0.215555i
\(940\) −26.5875 −0.867188
\(941\) −7.06663 −0.230366 −0.115183 0.993344i \(-0.536745\pi\)
−0.115183 + 0.993344i \(0.536745\pi\)
\(942\) 16.6626 + 2.25962i 0.542896 + 0.0736223i
\(943\) 7.53853i 0.245488i
\(944\) 6.11223i 0.198936i
\(945\) −20.8166 8.90839i −0.677164 0.289790i
\(946\) 0 0
\(947\) 11.7619i 0.382210i 0.981570 + 0.191105i \(0.0612071\pi\)
−0.981570 + 0.191105i \(0.938793\pi\)
\(948\) 0.739548 5.45348i 0.0240194 0.177121i
\(949\) −6.97052 −0.226273
\(950\) 11.2552i 0.365168i
\(951\) 1.54565 11.3977i 0.0501210 0.369596i
\(952\) 11.1433i 0.361158i
\(953\) 2.71982 0.0881036 0.0440518 0.999029i \(-0.485973\pi\)
0.0440518 + 0.999029i \(0.485973\pi\)
\(954\) −7.84980 + 28.4103i −0.254147 + 0.919816i
\(955\) −8.57357 −0.277434
\(956\) 12.0387 0.389361
\(957\) 0 0
\(958\) 18.8328 0.608461
\(959\) −1.52255 −0.0491656
\(960\) −0.618034 + 4.55743i −0.0199470 + 0.147090i
\(961\) −4.03989 −0.130319
\(962\) 1.51690i 0.0489067i
\(963\) −6.45349 1.78311i −0.207961 0.0574599i
\(964\) 20.5642i 0.662328i
\(965\) 25.9295 0.834700
\(966\) 13.4877 + 1.82907i 0.433960 + 0.0588493i
\(967\) 21.8182i 0.701625i 0.936446 + 0.350812i \(0.114095\pi\)
−0.936446 + 0.350812i \(0.885905\pi\)
\(968\) 0 0
\(969\) 8.67424 63.9646i 0.278657 2.05484i
\(970\) 9.53523i 0.306158i
\(971\) 44.3702i 1.42391i 0.702226 + 0.711954i \(0.252189\pi\)
−0.702226 + 0.711954i \(0.747811\pi\)
\(972\) −12.1803 9.72827i −0.390685 0.312035i
\(973\) 13.8723 0.444726
\(974\) 26.8604 0.860661
\(975\) 0.719026 5.30215i 0.0230273 0.169805i
\(976\) 13.9034i 0.445038i
\(977\) 31.3275i 1.00226i −0.865373 0.501128i \(-0.832919\pi\)
0.865373 0.501128i \(-0.167081\pi\)
\(978\) 12.1552 + 1.64837i 0.388681 + 0.0527091i
\(979\) 0 0
\(980\) 11.4361i 0.365313i
\(981\) 3.78330 13.6927i 0.120792 0.437173i
\(982\) 19.0395 0.607573
\(983\) 38.4222i 1.22548i −0.790285 0.612740i \(-0.790067\pi\)
0.790285 0.612740i \(-0.209933\pi\)
\(984\) 2.70200 + 0.366418i 0.0861366 + 0.0116810i
\(985\) 37.0893i 1.18176i
\(986\) 3.15086 0.100344
\(987\) −28.2029 3.82459i −0.897707 0.121738i
\(988\) 8.26785 0.263035
\(989\) −16.4008 −0.521517
\(990\) 0 0
\(991\) −28.2808 −0.898371 −0.449185 0.893439i \(-0.648286\pi\)
−0.449185 + 0.893439i \(0.648286\pi\)
\(992\) 5.19231 0.164856
\(993\) −12.7184 1.72474i −0.403605 0.0547329i
\(994\) 1.47378 0.0467454
\(995\) 42.4000i 1.34417i
\(996\) −3.21674 0.436223i −0.101926 0.0138222i
\(997\) 23.6328i 0.748457i 0.927337 + 0.374228i \(0.122092\pi\)
−0.927337 + 0.374228i \(0.877908\pi\)
\(998\) −10.6200 −0.336170
\(999\) −4.81035 2.05857i −0.152193 0.0651303i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 726.2.b.c.725.1 8
3.2 odd 2 726.2.b.e.725.2 8
11.2 odd 10 66.2.h.a.29.1 8
11.3 even 5 726.2.h.f.233.2 8
11.4 even 5 726.2.h.h.215.2 8
11.5 even 5 66.2.h.b.41.1 yes 8
11.6 odd 10 726.2.h.d.239.1 8
11.7 odd 10 726.2.h.c.215.2 8
11.8 odd 10 726.2.h.a.233.2 8
11.9 even 5 726.2.h.j.161.1 8
11.10 odd 2 726.2.b.e.725.1 8
33.2 even 10 66.2.h.b.29.2 yes 8
33.5 odd 10 66.2.h.a.41.1 yes 8
33.8 even 10 726.2.h.h.233.2 8
33.14 odd 10 726.2.h.c.233.2 8
33.17 even 10 726.2.h.j.239.1 8
33.20 odd 10 726.2.h.d.161.2 8
33.26 odd 10 726.2.h.a.215.2 8
33.29 even 10 726.2.h.f.215.2 8
33.32 even 2 inner 726.2.b.c.725.2 8
44.27 odd 10 528.2.bn.a.305.2 8
44.35 even 10 528.2.bn.b.161.2 8
132.35 odd 10 528.2.bn.a.161.1 8
132.71 even 10 528.2.bn.b.305.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.2.h.a.29.1 8 11.2 odd 10
66.2.h.a.41.1 yes 8 33.5 odd 10
66.2.h.b.29.2 yes 8 33.2 even 10
66.2.h.b.41.1 yes 8 11.5 even 5
528.2.bn.a.161.1 8 132.35 odd 10
528.2.bn.a.305.2 8 44.27 odd 10
528.2.bn.b.161.2 8 44.35 even 10
528.2.bn.b.305.2 8 132.71 even 10
726.2.b.c.725.1 8 1.1 even 1 trivial
726.2.b.c.725.2 8 33.32 even 2 inner
726.2.b.e.725.1 8 11.10 odd 2
726.2.b.e.725.2 8 3.2 odd 2
726.2.h.a.215.2 8 33.26 odd 10
726.2.h.a.233.2 8 11.8 odd 10
726.2.h.c.215.2 8 11.7 odd 10
726.2.h.c.233.2 8 33.14 odd 10
726.2.h.d.161.2 8 33.20 odd 10
726.2.h.d.239.1 8 11.6 odd 10
726.2.h.f.215.2 8 33.29 even 10
726.2.h.f.233.2 8 11.3 even 5
726.2.h.h.215.2 8 11.4 even 5
726.2.h.h.233.2 8 33.8 even 10
726.2.h.j.161.1 8 11.9 even 5
726.2.h.j.239.1 8 33.17 even 10