L(s) = 1 | + 1.73i·3-s + (0.5 − 0.866i)5-s + (1.5 + 2.59i)7-s − 2.99·9-s + (−2.5 − 4.33i)11-s + (2.5 − 4.33i)13-s + (1.49 + 0.866i)15-s − 2·17-s − 4·19-s + (−4.5 + 2.59i)21-s + (0.5 − 0.866i)23-s + (2 + 3.46i)25-s − 5.19i·27-s + (4.5 + 7.79i)29-s + (0.5 − 0.866i)31-s + ⋯ |
L(s) = 1 | + 0.999i·3-s + (0.223 − 0.387i)5-s + (0.566 + 0.981i)7-s − 0.999·9-s + (−0.753 − 1.30i)11-s + (0.693 − 1.20i)13-s + (0.387 + 0.223i)15-s − 0.485·17-s − 0.917·19-s + (−0.981 + 0.566i)21-s + (0.104 − 0.180i)23-s + (0.400 + 0.692i)25-s − 0.999i·27-s + (0.835 + 1.44i)29-s + (0.0898 − 0.155i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 - 0.642i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.766 - 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.886588 + 0.322691i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.886588 + 0.322691i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - 1.73iT \) |
good | 5 | \( 1 + (-0.5 + 0.866i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.5 - 2.59i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (2.5 + 4.33i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.5 + 4.33i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 2T + 17T^{2} \) |
| 19 | \( 1 + 4T + 19T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.5 - 7.79i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 6T + 37T^{2} \) |
| 41 | \( 1 + (1.5 - 2.59i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.5 - 2.59i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 2T + 53T^{2} \) |
| 59 | \( 1 + (5.5 - 9.52i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.5 + 6.06i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 4T + 71T^{2} \) |
| 73 | \( 1 + 2T + 73T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 18T + 89T^{2} \) |
| 97 | \( 1 + (-6.5 - 11.2i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.04596314949755698763470883040, −13.77072857964450116476589777167, −12.60509325931048725117885152786, −11.15093858439666734076360950424, −10.49873156591307052267971904906, −8.793596843996729558892910973048, −8.420518511795351127598420248194, −5.88309429526529991076949664900, −5.03124924463530726898553060118, −3.07728264120660582400431114899,
2.06254548776481924300575113000, 4.48286581092201091310744652728, 6.46187784115568010412385152438, 7.32039019467316323887690579853, 8.534045389151660698350575117265, 10.22739584430604561091129408885, 11.25386671404890912983066860805, 12.44378222695289156138008676434, 13.58160528459214923618533362032, 14.19464943602577262242666871189