| L(s) = 1 | + 2·2-s + 2·3-s + 3·4-s + 4·6-s − 2·7-s + 4·8-s + 3·9-s − 8·11-s + 6·12-s − 4·14-s + 5·16-s + 6·17-s + 6·18-s − 8·19-s − 4·21-s − 16·22-s + 8·23-s + 8·24-s + 2·25-s + 4·27-s − 6·28-s + 16·29-s + 6·31-s + 6·32-s − 16·33-s + 12·34-s + 9·36-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 1.15·3-s + 3/2·4-s + 1.63·6-s − 0.755·7-s + 1.41·8-s + 9-s − 2.41·11-s + 1.73·12-s − 1.06·14-s + 5/4·16-s + 1.45·17-s + 1.41·18-s − 1.83·19-s − 0.872·21-s − 3.41·22-s + 1.66·23-s + 1.63·24-s + 2/5·25-s + 0.769·27-s − 1.13·28-s + 2.97·29-s + 1.07·31-s + 1.06·32-s − 2.78·33-s + 2.05·34-s + 3/2·36-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 50381604 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50381604 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(12.01746516\) |
| \(L(\frac12)\) |
\(\approx\) |
\(12.01746516\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.994068463065389265635760078966, −7.87405973695191219152580869984, −7.29011577315984090902451420925, −7.06860272349254201506043531778, −6.70335194041258897356112218936, −6.31988358257674050945569472898, −5.91775432011937844052370991349, −5.75407998644270619703397290337, −5.03301245263132417125907878165, −4.76493626586257884956253522732, −4.57458174510022555225775822460, −4.43273587248426435368797929675, −3.36618231298388744291594865157, −3.27832777108244891299865378811, −3.12289494237221678317643164818, −2.76368532167070847048574430749, −2.13742124702297399694266540684, −2.13423581081636619030868173097, −1.08395418286688434424738987159, −0.63108740312207414908542673603,
0.63108740312207414908542673603, 1.08395418286688434424738987159, 2.13423581081636619030868173097, 2.13742124702297399694266540684, 2.76368532167070847048574430749, 3.12289494237221678317643164818, 3.27832777108244891299865378811, 3.36618231298388744291594865157, 4.43273587248426435368797929675, 4.57458174510022555225775822460, 4.76493626586257884956253522732, 5.03301245263132417125907878165, 5.75407998644270619703397290337, 5.91775432011937844052370991349, 6.31988358257674050945569472898, 6.70335194041258897356112218936, 7.06860272349254201506043531778, 7.29011577315984090902451420925, 7.87405973695191219152580869984, 7.994068463065389265635760078966