L(s) = 1 | + (1 + 1.73i)2-s + (0.5 − 0.866i)3-s + (−1.99 + 3.46i)4-s + (2.5 + 4.33i)5-s + 1.99·6-s + (8.5 + 16.4i)7-s − 7.99·8-s + (13 + 22.5i)9-s + (−5 + 8.66i)10-s + (1 − 1.73i)11-s + (1.99 + 3.46i)12-s − 8·13-s + (−19.9 + 31.1i)14-s + 5·15-s + (−8 − 13.8i)16-s + (26 − 45.0i)17-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (0.0962 − 0.166i)3-s + (−0.249 + 0.433i)4-s + (0.223 + 0.387i)5-s + 0.136·6-s + (0.458 + 0.888i)7-s − 0.353·8-s + (0.481 + 0.833i)9-s + (−0.158 + 0.273i)10-s + (0.0274 − 0.0474i)11-s + (0.0481 + 0.0833i)12-s − 0.170·13-s + (−0.381 + 0.595i)14-s + 0.0860·15-s + (−0.125 − 0.216i)16-s + (0.370 − 0.642i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.109 - 0.993i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.109 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.36936 + 1.22626i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.36936 + 1.22626i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 - 1.73i)T \) |
| 5 | \( 1 + (-2.5 - 4.33i)T \) |
| 7 | \( 1 + (-8.5 - 16.4i)T \) |
good | 3 | \( 1 + (-0.5 + 0.866i)T + (-13.5 - 23.3i)T^{2} \) |
| 11 | \( 1 + (-1 + 1.73i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 8T + 2.19e3T^{2} \) |
| 17 | \( 1 + (-26 + 45.0i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (13 + 22.5i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (33.5 + 58.0i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 69T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-166 + 287. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (98 + 169. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 - 353T + 6.89e4T^{2} \) |
| 43 | \( 1 + 369T + 7.95e4T^{2} \) |
| 47 | \( 1 + (44 + 76.2i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (291 - 504. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-175 + 303. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-233.5 - 404. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (145.5 - 252. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 770T + 3.57e5T^{2} \) |
| 73 | \( 1 + (314 - 543. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (585 + 1.01e3i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 525T + 5.71e5T^{2} \) |
| 89 | \( 1 + (44.5 + 77.0i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + 290T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.46198645234442961249175383338, −13.57252672117858168800399144401, −12.44463204221851683778371605495, −11.27960921055354730281736862891, −9.821725981542800403805216314986, −8.413840211524428609751120563425, −7.34819419645862299868845152426, −5.93891313420744606603028701489, −4.65860703636915936932312377835, −2.47755848146599701218814816680,
1.29954010762029141943497057740, 3.62896135393571611011497399557, 4.87418974724685251818133944659, 6.59437431472095699429908910563, 8.255800488813696362858871972577, 9.697309774893940696392087317012, 10.50432978411598396335334626351, 11.86904520697557713628736282217, 12.79087747875899032434507728206, 13.90017956161391562780667209272