Properties

Label 70.4.e.c
Level $70$
Weight $4$
Character orbit 70.e
Analytic conductor $4.130$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [70,4,Mod(11,70)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(70, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("70.11"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 70.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.13013370040\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \zeta_{6} q^{2} + ( - \zeta_{6} + 1) q^{3} + (4 \zeta_{6} - 4) q^{4} + 5 \zeta_{6} q^{5} + 2 q^{6} + (19 \zeta_{6} - 1) q^{7} - 8 q^{8} + 26 \zeta_{6} q^{9} + (10 \zeta_{6} - 10) q^{10} + ( - 2 \zeta_{6} + 2) q^{11}+ \cdots + 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + q^{3} - 4 q^{4} + 5 q^{5} + 4 q^{6} + 17 q^{7} - 16 q^{8} + 26 q^{9} - 10 q^{10} + 2 q^{11} + 4 q^{12} - 16 q^{13} - 40 q^{14} + 10 q^{15} - 16 q^{16} + 52 q^{17} - 52 q^{18} - 26 q^{19}+ \cdots + 104 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/70\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(57\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
11.1
0.500000 + 0.866025i
0.500000 0.866025i
1.00000 + 1.73205i 0.500000 0.866025i −2.00000 + 3.46410i 2.50000 + 4.33013i 2.00000 8.50000 + 16.4545i −8.00000 13.0000 + 22.5167i −5.00000 + 8.66025i
51.1 1.00000 1.73205i 0.500000 + 0.866025i −2.00000 3.46410i 2.50000 4.33013i 2.00000 8.50000 16.4545i −8.00000 13.0000 22.5167i −5.00000 8.66025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 70.4.e.c 2
3.b odd 2 1 630.4.k.b 2
4.b odd 2 1 560.4.q.d 2
5.b even 2 1 350.4.e.a 2
5.c odd 4 2 350.4.j.e 4
7.b odd 2 1 490.4.e.m 2
7.c even 3 1 inner 70.4.e.c 2
7.c even 3 1 490.4.a.c 1
7.d odd 6 1 490.4.a.e 1
7.d odd 6 1 490.4.e.m 2
21.h odd 6 1 630.4.k.b 2
28.g odd 6 1 560.4.q.d 2
35.i odd 6 1 2450.4.a.be 1
35.j even 6 1 350.4.e.a 2
35.j even 6 1 2450.4.a.bg 1
35.l odd 12 2 350.4.j.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.4.e.c 2 1.a even 1 1 trivial
70.4.e.c 2 7.c even 3 1 inner
350.4.e.a 2 5.b even 2 1
350.4.e.a 2 35.j even 6 1
350.4.j.e 4 5.c odd 4 2
350.4.j.e 4 35.l odd 12 2
490.4.a.c 1 7.c even 3 1
490.4.a.e 1 7.d odd 6 1
490.4.e.m 2 7.b odd 2 1
490.4.e.m 2 7.d odd 6 1
560.4.q.d 2 4.b odd 2 1
560.4.q.d 2 28.g odd 6 1
630.4.k.b 2 3.b odd 2 1
630.4.k.b 2 21.h odd 6 1
2450.4.a.be 1 35.i odd 6 1
2450.4.a.bg 1 35.j even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - T_{3} + 1 \) acting on \(S_{4}^{\mathrm{new}}(70, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$3$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$7$ \( T^{2} - 17T + 343 \) Copy content Toggle raw display
$11$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$13$ \( (T + 8)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 52T + 2704 \) Copy content Toggle raw display
$19$ \( T^{2} + 26T + 676 \) Copy content Toggle raw display
$23$ \( T^{2} + 67T + 4489 \) Copy content Toggle raw display
$29$ \( (T - 69)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 332T + 110224 \) Copy content Toggle raw display
$37$ \( T^{2} + 196T + 38416 \) Copy content Toggle raw display
$41$ \( (T - 353)^{2} \) Copy content Toggle raw display
$43$ \( (T + 369)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 88T + 7744 \) Copy content Toggle raw display
$53$ \( T^{2} + 582T + 338724 \) Copy content Toggle raw display
$59$ \( T^{2} - 350T + 122500 \) Copy content Toggle raw display
$61$ \( T^{2} - 467T + 218089 \) Copy content Toggle raw display
$67$ \( T^{2} + 291T + 84681 \) Copy content Toggle raw display
$71$ \( (T - 770)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 628T + 394384 \) Copy content Toggle raw display
$79$ \( T^{2} + 1170 T + 1368900 \) Copy content Toggle raw display
$83$ \( (T - 525)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 89T + 7921 \) Copy content Toggle raw display
$97$ \( (T + 290)^{2} \) Copy content Toggle raw display
show more
show less