Properties

Label 2-70-1.1-c9-0-13
Degree $2$
Conductor $70$
Sign $-1$
Analytic cond. $36.0525$
Root an. cond. $6.00437$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·2-s + 122.·3-s + 256·4-s + 625·5-s − 1.95e3·6-s + 2.40e3·7-s − 4.09e3·8-s − 4.78e3·9-s − 1.00e4·10-s − 918.·11-s + 3.12e4·12-s − 1.74e5·13-s − 3.84e4·14-s + 7.62e4·15-s + 6.55e4·16-s − 1.57e5·17-s + 7.66e4·18-s − 8.50e5·19-s + 1.60e5·20-s + 2.93e5·21-s + 1.46e4·22-s + 1.18e6·23-s − 4.99e5·24-s + 3.90e5·25-s + 2.79e6·26-s − 2.98e6·27-s + 6.14e5·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.869·3-s + 0.5·4-s + 0.447·5-s − 0.615·6-s + 0.377·7-s − 0.353·8-s − 0.243·9-s − 0.316·10-s − 0.0189·11-s + 0.434·12-s − 1.69·13-s − 0.267·14-s + 0.389·15-s + 0.250·16-s − 0.458·17-s + 0.172·18-s − 1.49·19-s + 0.223·20-s + 0.328·21-s + 0.0133·22-s + 0.880·23-s − 0.307·24-s + 0.200·25-s + 1.19·26-s − 1.08·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(70\)    =    \(2 \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(36.0525\)
Root analytic conductor: \(6.00437\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 70,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 16T \)
5 \( 1 - 625T \)
7 \( 1 - 2.40e3T \)
good3 \( 1 - 122.T + 1.96e4T^{2} \)
11 \( 1 + 918.T + 2.35e9T^{2} \)
13 \( 1 + 1.74e5T + 1.06e10T^{2} \)
17 \( 1 + 1.57e5T + 1.18e11T^{2} \)
19 \( 1 + 8.50e5T + 3.22e11T^{2} \)
23 \( 1 - 1.18e6T + 1.80e12T^{2} \)
29 \( 1 - 3.21e6T + 1.45e13T^{2} \)
31 \( 1 + 6.33e5T + 2.64e13T^{2} \)
37 \( 1 - 1.30e7T + 1.29e14T^{2} \)
41 \( 1 + 2.97e7T + 3.27e14T^{2} \)
43 \( 1 + 2.02e7T + 5.02e14T^{2} \)
47 \( 1 + 1.68e7T + 1.11e15T^{2} \)
53 \( 1 + 2.35e7T + 3.29e15T^{2} \)
59 \( 1 + 1.29e8T + 8.66e15T^{2} \)
61 \( 1 + 1.47e8T + 1.16e16T^{2} \)
67 \( 1 + 5.26e7T + 2.72e16T^{2} \)
71 \( 1 - 1.22e8T + 4.58e16T^{2} \)
73 \( 1 - 8.11e7T + 5.88e16T^{2} \)
79 \( 1 - 6.33e8T + 1.19e17T^{2} \)
83 \( 1 + 6.52e8T + 1.86e17T^{2} \)
89 \( 1 - 8.70e8T + 3.50e17T^{2} \)
97 \( 1 - 5.59e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.22020221034861508969206577434, −10.89607070705651888737141704476, −9.750808864962110761526617728054, −8.807772719875007416171798406015, −7.86151769363163172762491120217, −6.56551907139892039272241082782, −4.83143322997916784309353268561, −2.84958492120401388139472899737, −1.91027291184698527997534179971, 0, 1.91027291184698527997534179971, 2.84958492120401388139472899737, 4.83143322997916784309353268561, 6.56551907139892039272241082782, 7.86151769363163172762491120217, 8.807772719875007416171798406015, 9.750808864962110761526617728054, 10.89607070705651888737141704476, 12.22020221034861508969206577434

Graph of the $Z$-function along the critical line