Properties

Label 70.10.a.c
Level $70$
Weight $10$
Character orbit 70.a
Self dual yes
Analytic conductor $36.053$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [70,10,Mod(1,70)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(70, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("70.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 70.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-32,58] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.0525085315\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{541}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 135 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4\sqrt{541}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 16 q^{2} + ( - \beta + 29) q^{3} + 256 q^{4} + 625 q^{5} + (16 \beta - 464) q^{6} + 2401 q^{7} - 4096 q^{8} + ( - 58 \beta - 10186) q^{9} - 10000 q^{10} + ( - 222 \beta - 21573) q^{11} + ( - 256 \beta + 7424) q^{12}+ \cdots + (3512526 \beta + 331197234) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{2} + 58 q^{3} + 512 q^{4} + 1250 q^{5} - 928 q^{6} + 4802 q^{7} - 8192 q^{8} - 20372 q^{9} - 20000 q^{10} - 43146 q^{11} + 14848 q^{12} - 83738 q^{13} - 76832 q^{14} + 36250 q^{15} + 131072 q^{16}+ \cdots + 662394468 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
12.1297
−11.1297
−16.0000 −64.0376 256.000 625.000 1024.60 2401.00 −4096.00 −15582.2 −10000.0
1.2 −16.0000 122.038 256.000 625.000 −1952.60 2401.00 −4096.00 −4789.82 −10000.0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 70.10.a.c 2
5.b even 2 1 350.10.a.i 2
5.c odd 4 2 350.10.c.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.10.a.c 2 1.a even 1 1 trivial
350.10.a.i 2 5.b even 2 1
350.10.c.h 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 58T_{3} - 7815 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(70))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 16)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 58T - 7815 \) Copy content Toggle raw display
$5$ \( (T - 625)^{2} \) Copy content Toggle raw display
$7$ \( (T - 2401)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 43146 T + 38792025 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 15824076839 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 27335002527 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 352814900780 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 500018827500 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 10557354279231 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 2867679401792 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 191610543156620 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 225216831250368 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 285016519494868 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 740178238250241 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 20\!\cdots\!12 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 23\!\cdots\!92 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 10\!\cdots\!08 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 13\!\cdots\!92 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 35\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 21\!\cdots\!84 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 49\!\cdots\!21 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 17\!\cdots\!52 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 29\!\cdots\!20 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 16\!\cdots\!55 \) Copy content Toggle raw display
show more
show less