Properties

Label 2-6975-1.1-c1-0-87
Degree $2$
Conductor $6975$
Sign $1$
Analytic cond. $55.6956$
Root an. cond. $7.46295$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 3·11-s + 4·13-s + 4·16-s + 7·17-s + 3·19-s − 5·23-s − 29-s + 31-s + 8·41-s + 10·43-s − 6·44-s + 2·47-s − 7·49-s − 8·52-s − 9·53-s + 12·59-s − 2·61-s − 8·64-s + 11·67-s − 14·68-s + 2·71-s − 10·73-s − 6·76-s − 10·79-s + 3·83-s − 7·89-s + ⋯
L(s)  = 1  − 4-s + 0.904·11-s + 1.10·13-s + 16-s + 1.69·17-s + 0.688·19-s − 1.04·23-s − 0.185·29-s + 0.179·31-s + 1.24·41-s + 1.52·43-s − 0.904·44-s + 0.291·47-s − 49-s − 1.10·52-s − 1.23·53-s + 1.56·59-s − 0.256·61-s − 64-s + 1.34·67-s − 1.69·68-s + 0.237·71-s − 1.17·73-s − 0.688·76-s − 1.12·79-s + 0.329·83-s − 0.741·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6975\)    =    \(3^{2} \cdot 5^{2} \cdot 31\)
Sign: $1$
Analytic conductor: \(55.6956\)
Root analytic conductor: \(7.46295\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6975,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.970043234\)
\(L(\frac12)\) \(\approx\) \(1.970043234\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
31 \( 1 - T \)
good2 \( 1 + p T^{2} \) 1.2.a
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 + 5 T + p T^{2} \) 1.23.f
29 \( 1 + T + p T^{2} \) 1.29.b
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 + 7 T + p T^{2} \) 1.89.h
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.953130262237492561476243466600, −7.49532034420196734748879731989, −6.35030469901405090326754540607, −5.80857599496988502553767807658, −5.20453864467659136189984011924, −4.12557734124254618073263874531, −3.79354947968001088836524721550, −2.95597753122059900766596203721, −1.48683397358702736784526648726, −0.812494885330245873155671424791, 0.812494885330245873155671424791, 1.48683397358702736784526648726, 2.95597753122059900766596203721, 3.79354947968001088836524721550, 4.12557734124254618073263874531, 5.20453864467659136189984011924, 5.80857599496988502553767807658, 6.35030469901405090326754540607, 7.49532034420196734748879731989, 7.953130262237492561476243466600

Graph of the $Z$-function along the critical line