Properties

Label 2-6975-1.1-c1-0-150
Degree $2$
Conductor $6975$
Sign $-1$
Analytic cond. $55.6956$
Root an. cond. $7.46295$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 3·11-s − 4·13-s + 4·16-s − 7·17-s + 3·19-s + 5·23-s − 29-s + 31-s + 8·41-s − 10·43-s − 6·44-s − 2·47-s − 7·49-s + 8·52-s + 9·53-s + 12·59-s − 2·61-s − 8·64-s − 11·67-s + 14·68-s + 2·71-s + 10·73-s − 6·76-s − 10·79-s − 3·83-s − 7·89-s + ⋯
L(s)  = 1  − 4-s + 0.904·11-s − 1.10·13-s + 16-s − 1.69·17-s + 0.688·19-s + 1.04·23-s − 0.185·29-s + 0.179·31-s + 1.24·41-s − 1.52·43-s − 0.904·44-s − 0.291·47-s − 49-s + 1.10·52-s + 1.23·53-s + 1.56·59-s − 0.256·61-s − 64-s − 1.34·67-s + 1.69·68-s + 0.237·71-s + 1.17·73-s − 0.688·76-s − 1.12·79-s − 0.329·83-s − 0.741·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6975\)    =    \(3^{2} \cdot 5^{2} \cdot 31\)
Sign: $-1$
Analytic conductor: \(55.6956\)
Root analytic conductor: \(7.46295\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6975,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
31 \( 1 - T \)
good2 \( 1 + p T^{2} \) 1.2.a
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 + T + p T^{2} \) 1.29.b
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 11 T + p T^{2} \) 1.67.l
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 + 7 T + p T^{2} \) 1.89.h
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.53195204702960205591793355015, −6.97100420332807099229507858774, −6.23543165220367646793180589230, −5.26809099658662807591767952172, −4.73108283071087829693705035723, −4.11643549399312769040049033363, −3.26193995005782637557861464154, −2.29620745536765727397260527578, −1.13748345165350200951233232485, 0, 1.13748345165350200951233232485, 2.29620745536765727397260527578, 3.26193995005782637557861464154, 4.11643549399312769040049033363, 4.73108283071087829693705035723, 5.26809099658662807591767952172, 6.23543165220367646793180589230, 6.97100420332807099229507858774, 7.53195204702960205591793355015

Graph of the $Z$-function along the critical line