Properties

Label 2-6800-1.1-c1-0-23
Degree $2$
Conductor $6800$
Sign $1$
Analytic cond. $54.2982$
Root an. cond. $7.36873$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.89·3-s + 0.513·7-s + 0.591·9-s + 1.48·11-s − 5.38·13-s + 17-s + 2.40·19-s − 0.973·21-s − 0.513·23-s + 4.56·27-s + 4.40·29-s − 7.68·31-s − 2.81·33-s − 9.79·37-s + 10.1·39-s + 4.97·41-s + 2·43-s + 0.408·47-s − 6.73·49-s − 1.89·51-s − 10.9·53-s − 4.56·57-s + 12.3·59-s + 0.618·61-s + 0.303·63-s + 14.6·67-s + 0.973·69-s + ⋯
L(s)  = 1  − 1.09·3-s + 0.194·7-s + 0.197·9-s + 0.448·11-s − 1.49·13-s + 0.242·17-s + 0.552·19-s − 0.212·21-s − 0.107·23-s + 0.878·27-s + 0.818·29-s − 1.38·31-s − 0.490·33-s − 1.60·37-s + 1.63·39-s + 0.776·41-s + 0.304·43-s + 0.0595·47-s − 0.962·49-s − 0.265·51-s − 1.50·53-s − 0.604·57-s + 1.60·59-s + 0.0791·61-s + 0.0382·63-s + 1.78·67-s + 0.117·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6800\)    =    \(2^{4} \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(54.2982\)
Root analytic conductor: \(7.36873\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8901257505\)
\(L(\frac12)\) \(\approx\) \(0.8901257505\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
17 \( 1 - T \)
good3 \( 1 + 1.89T + 3T^{2} \)
7 \( 1 - 0.513T + 7T^{2} \)
11 \( 1 - 1.48T + 11T^{2} \)
13 \( 1 + 5.38T + 13T^{2} \)
19 \( 1 - 2.40T + 19T^{2} \)
23 \( 1 + 0.513T + 23T^{2} \)
29 \( 1 - 4.40T + 29T^{2} \)
31 \( 1 + 7.68T + 31T^{2} \)
37 \( 1 + 9.79T + 37T^{2} \)
41 \( 1 - 4.97T + 41T^{2} \)
43 \( 1 - 2T + 43T^{2} \)
47 \( 1 - 0.408T + 47T^{2} \)
53 \( 1 + 10.9T + 53T^{2} \)
59 \( 1 - 12.3T + 59T^{2} \)
61 \( 1 - 0.618T + 61T^{2} \)
67 \( 1 - 14.6T + 67T^{2} \)
71 \( 1 + 6.65T + 71T^{2} \)
73 \( 1 + 0.408T + 73T^{2} \)
79 \( 1 - 3.54T + 79T^{2} \)
83 \( 1 - 8.76T + 83T^{2} \)
89 \( 1 + 9.98T + 89T^{2} \)
97 \( 1 + 8.61T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.85767445741910680714640284942, −7.08405180890120231867986907544, −6.64210429604199754479104063219, −5.70469924563449377710043500835, −5.20420798114090909398236412512, −4.65325785375873072214116044781, −3.65710129827447208880228591075, −2.71078754488980848757120429151, −1.67465608981473820330801436535, −0.51108979937326385821119212461, 0.51108979937326385821119212461, 1.67465608981473820330801436535, 2.71078754488980848757120429151, 3.65710129827447208880228591075, 4.65325785375873072214116044781, 5.20420798114090909398236412512, 5.70469924563449377710043500835, 6.64210429604199754479104063219, 7.08405180890120231867986907544, 7.85767445741910680714640284942

Graph of the $Z$-function along the critical line