Properties

Label 6-6800e3-1.1-c1e3-0-4
Degree $6$
Conductor $314432000000$
Sign $-1$
Analytic cond. $160087.$
Root an. cond. $7.36873$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $3$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·9-s − 2·11-s − 5·13-s − 3·17-s − 11·19-s − 3·27-s + 5·29-s − 3·31-s − 2·33-s − 4·37-s − 5·39-s + 6·41-s + 10·43-s − 25·47-s − 5·49-s − 3·51-s − 19·53-s − 11·57-s − 7·59-s + 3·61-s − 10·67-s + 25·71-s − 9·73-s + 2·79-s − 4·81-s − 16·83-s + ⋯
L(s)  = 1  + 0.577·3-s − 2/3·9-s − 0.603·11-s − 1.38·13-s − 0.727·17-s − 2.52·19-s − 0.577·27-s + 0.928·29-s − 0.538·31-s − 0.348·33-s − 0.657·37-s − 0.800·39-s + 0.937·41-s + 1.52·43-s − 3.64·47-s − 5/7·49-s − 0.420·51-s − 2.60·53-s − 1.45·57-s − 0.911·59-s + 0.384·61-s − 1.22·67-s + 2.96·71-s − 1.05·73-s + 0.225·79-s − 4/9·81-s − 1.75·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{6} \cdot 17^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{6} \cdot 17^{3}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{12} \cdot 5^{6} \cdot 17^{3}\)
Sign: $-1$
Analytic conductor: \(160087.\)
Root analytic conductor: \(7.36873\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((6,\ 2^{12} \cdot 5^{6} \cdot 17^{3} ,\ ( \ : 1/2, 1/2, 1/2 ),\ -1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
17$C_1$ \( ( 1 + T )^{3} \)
good3$S_4\times C_2$ \( 1 - T + p T^{2} - 2 T^{3} + p^{2} T^{4} - p^{2} T^{5} + p^{3} T^{6} \) 3.3.ab_d_ac
7$S_4\times C_2$ \( 1 + 5 T^{2} - 8 T^{3} + 5 p T^{4} + p^{3} T^{6} \) 3.7.a_f_ai
11$S_4\times C_2$ \( 1 + 2 T + 13 T^{2} + 60 T^{3} + 13 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \) 3.11.c_n_ci
13$S_4\times C_2$ \( 1 + 5 T + 35 T^{2} + 126 T^{3} + 35 p T^{4} + 5 p^{2} T^{5} + p^{3} T^{6} \) 3.13.f_bj_ew
19$S_4\times C_2$ \( 1 + 11 T + 85 T^{2} + 434 T^{3} + 85 p T^{4} + 11 p^{2} T^{5} + p^{3} T^{6} \) 3.19.l_dh_qs
23$S_4\times C_2$ \( 1 + 53 T^{2} - 8 T^{3} + 53 p T^{4} + p^{3} T^{6} \) 3.23.a_cb_ai
29$S_4\times C_2$ \( 1 - 5 T + 63 T^{2} - 294 T^{3} + 63 p T^{4} - 5 p^{2} T^{5} + p^{3} T^{6} \) 3.29.af_cl_ali
31$S_4\times C_2$ \( 1 + 3 T + 35 T^{2} + 158 T^{3} + 35 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} \) 3.31.d_bj_gc
37$S_4\times C_2$ \( 1 + 4 T + 67 T^{2} + 328 T^{3} + 67 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} \) 3.37.e_cp_mq
41$C_2$ \( ( 1 - 2 T + p T^{2} )^{3} \) 3.41.ag_ff_atg
43$S_4\times C_2$ \( 1 - 10 T + 137 T^{2} - 828 T^{3} + 137 p T^{4} - 10 p^{2} T^{5} + p^{3} T^{6} \) 3.43.ak_fh_abfw
47$S_4\times C_2$ \( 1 + 25 T + 317 T^{2} + 2606 T^{3} + 317 p T^{4} + 25 p^{2} T^{5} + p^{3} T^{6} \) 3.47.z_mf_dwg
53$S_4\times C_2$ \( 1 + 19 T + 247 T^{2} + 2010 T^{3} + 247 p T^{4} + 19 p^{2} T^{5} + p^{3} T^{6} \) 3.53.t_jn_czi
59$S_4\times C_2$ \( 1 + 7 T + 69 T^{2} + 234 T^{3} + 69 p T^{4} + 7 p^{2} T^{5} + p^{3} T^{6} \) 3.59.h_cr_ja
61$S_4\times C_2$ \( 1 - 3 T + 143 T^{2} - 218 T^{3} + 143 p T^{4} - 3 p^{2} T^{5} + p^{3} T^{6} \) 3.61.ad_fn_aik
67$S_4\times C_2$ \( 1 + 10 T + 185 T^{2} + 1308 T^{3} + 185 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} \) 3.67.k_hd_byi
71$S_4\times C_2$ \( 1 - 25 T + 371 T^{2} - 3578 T^{3} + 371 p T^{4} - 25 p^{2} T^{5} + p^{3} T^{6} \) 3.71.az_oh_afhq
73$S_4\times C_2$ \( 1 + 9 T + 203 T^{2} + 1318 T^{3} + 203 p T^{4} + 9 p^{2} T^{5} + p^{3} T^{6} \) 3.73.j_hv_bys
79$S_4\times C_2$ \( 1 - 2 T + 177 T^{2} - 92 T^{3} + 177 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \) 3.79.ac_gv_ado
83$S_4\times C_2$ \( 1 + 16 T + 3 p T^{2} + 2592 T^{3} + 3 p^{2} T^{4} + 16 p^{2} T^{5} + p^{3} T^{6} \) 3.83.q_jp_dvs
89$S_4\times C_2$ \( 1 - 15 T + 239 T^{2} - 2674 T^{3} + 239 p T^{4} - 15 p^{2} T^{5} + p^{3} T^{6} \) 3.89.ap_jf_adyw
97$S_4\times C_2$ \( 1 - 13 T + 195 T^{2} - 1630 T^{3} + 195 p T^{4} - 13 p^{2} T^{5} + p^{3} T^{6} \) 3.97.an_hn_acks
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.38850367231586561100063056246, −7.24853992397151804035954860383, −6.92945047983595493801891540730, −6.56100939102451876973044018493, −6.33508679264076676884143814447, −6.31307250549864942259402874978, −6.29731209292396828932026220588, −5.71573326265023360922686941219, −5.41403959744838301284728935933, −5.27570209226588252492521866382, −4.79995825768013865113956139083, −4.77251723860020793086661602597, −4.65996165970713228135256172342, −4.15076263005340830144114995472, −4.14442131801277568116637120528, −3.72762728424397999963212257718, −3.21824927327330266865932510211, −3.08715849138481122589035371295, −3.03628224829540817617087904220, −2.43323947868659603321431717790, −2.30302714546367605728625233597, −2.21138151492614445645559690706, −1.66959537067622283648872596168, −1.54023151797889733941253284734, −0.902665140938255736494760134006, 0, 0, 0, 0.902665140938255736494760134006, 1.54023151797889733941253284734, 1.66959537067622283648872596168, 2.21138151492614445645559690706, 2.30302714546367605728625233597, 2.43323947868659603321431717790, 3.03628224829540817617087904220, 3.08715849138481122589035371295, 3.21824927327330266865932510211, 3.72762728424397999963212257718, 4.14442131801277568116637120528, 4.15076263005340830144114995472, 4.65996165970713228135256172342, 4.77251723860020793086661602597, 4.79995825768013865113956139083, 5.27570209226588252492521866382, 5.41403959744838301284728935933, 5.71573326265023360922686941219, 6.29731209292396828932026220588, 6.31307250549864942259402874978, 6.33508679264076676884143814447, 6.56100939102451876973044018493, 6.92945047983595493801891540730, 7.24853992397151804035954860383, 7.38850367231586561100063056246

Graph of the $Z$-function along the critical line