L(s) = 1 | + (1.26 − 1.06i)2-s + (−1.44 − 0.958i)3-s + (0.124 − 0.708i)4-s + (−2.83 + 0.318i)6-s + (0.215 + 1.22i)7-s + (1.05 + 1.82i)8-s + (1.16 + 2.76i)9-s + (3.30 + 1.20i)11-s + (−0.859 + 0.902i)12-s + (0.452 + 0.380i)13-s + (1.56 + 1.31i)14-s + (4.62 + 1.68i)16-s + (2.58 − 4.46i)17-s + (4.39 + 2.26i)18-s + (1.41 + 2.45i)19-s + ⋯ |
L(s) = 1 | + (0.893 − 0.749i)2-s + (−0.832 − 0.553i)3-s + (0.0624 − 0.354i)4-s + (−1.15 + 0.129i)6-s + (0.0814 + 0.461i)7-s + (0.373 + 0.646i)8-s + (0.387 + 0.921i)9-s + (0.996 + 0.362i)11-s + (−0.248 + 0.260i)12-s + (0.125 + 0.105i)13-s + (0.418 + 0.351i)14-s + (1.15 + 0.420i)16-s + (0.625 − 1.08i)17-s + (1.03 + 0.533i)18-s + (0.325 + 0.563i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.793 + 0.608i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.793 + 0.608i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.90448 - 0.646029i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.90448 - 0.646029i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.44 + 0.958i)T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-1.26 + 1.06i)T + (0.347 - 1.96i)T^{2} \) |
| 7 | \( 1 + (-0.215 - 1.22i)T + (-6.57 + 2.39i)T^{2} \) |
| 11 | \( 1 + (-3.30 - 1.20i)T + (8.42 + 7.07i)T^{2} \) |
| 13 | \( 1 + (-0.452 - 0.380i)T + (2.25 + 12.8i)T^{2} \) |
| 17 | \( 1 + (-2.58 + 4.46i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.41 - 2.45i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.16 + 6.59i)T + (-21.6 - 7.86i)T^{2} \) |
| 29 | \( 1 + (7.21 - 6.05i)T + (5.03 - 28.5i)T^{2} \) |
| 31 | \( 1 + (-0.196 + 1.11i)T + (-29.1 - 10.6i)T^{2} \) |
| 37 | \( 1 + (2.34 - 4.06i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.43 - 3.71i)T + (7.11 + 40.3i)T^{2} \) |
| 43 | \( 1 + (2.03 + 0.739i)T + (32.9 + 27.6i)T^{2} \) |
| 47 | \( 1 + (-1.08 - 6.14i)T + (-44.1 + 16.0i)T^{2} \) |
| 53 | \( 1 - 8.21T + 53T^{2} \) |
| 59 | \( 1 + (-12.6 + 4.62i)T + (45.1 - 37.9i)T^{2} \) |
| 61 | \( 1 + (1.38 + 7.85i)T + (-57.3 + 20.8i)T^{2} \) |
| 67 | \( 1 + (3.37 + 2.82i)T + (11.6 + 65.9i)T^{2} \) |
| 71 | \( 1 + (3.43 - 5.95i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-0.715 - 1.23i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.970 + 0.814i)T + (13.7 - 77.7i)T^{2} \) |
| 83 | \( 1 + (-1.17 + 0.982i)T + (14.4 - 81.7i)T^{2} \) |
| 89 | \( 1 + (6.52 + 11.3i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (13.0 + 4.74i)T + (74.3 + 62.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.82450349693667940141917369246, −9.819025785105489249673407916571, −8.684866127090504487711372926894, −7.59922486963025365961070410929, −6.71603898299867673054445831385, −5.62712712619742578488536938056, −4.92148388554705074355187140402, −3.89333716617029403091564898284, −2.59455972129561137208811260572, −1.39723328154887594716901159329,
1.12699079973699069558959835272, 3.77642383527442693489115674708, 4.02352535274562055488565037424, 5.44739506167668797371156489663, 5.78240151975581394398984091736, 6.82556736605757021887455106902, 7.52465147692236727401250662193, 8.984653110155221647660662636082, 9.843118675573927619663924885302, 10.62839600331599750807993276319