Properties

Label 675.2.l.h.76.13
Level $675$
Weight $2$
Character 675.76
Analytic conductor $5.390$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(76,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([14, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.76"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.l (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 76.13
Character \(\chi\) \(=\) 675.76
Dual form 675.2.l.h.151.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.26326 - 1.06000i) q^{2} +(-1.44261 - 0.958575i) q^{3} +(0.124928 - 0.708504i) q^{4} +(-2.83849 + 0.318243i) q^{6} +(0.215456 + 1.22191i) q^{7} +(1.05587 + 1.82882i) q^{8} +(1.16227 + 2.76571i) q^{9} +(3.30366 + 1.20243i) q^{11} +(-0.859377 + 0.902344i) q^{12} +(0.452936 + 0.380059i) q^{13} +(1.56741 + 1.31521i) q^{14} +(4.62449 + 1.68318i) q^{16} +(2.58056 - 4.46967i) q^{17} +(4.39990 + 2.26180i) q^{18} +(1.41748 + 2.45515i) q^{19} +(0.860474 - 1.96928i) q^{21} +(5.44797 - 1.98290i) q^{22} +(1.16257 - 6.59324i) q^{23} +(0.229849 - 3.65042i) q^{24} +0.975040 q^{26} +(0.974431 - 5.10397i) q^{27} +0.892646 q^{28} +(-7.21421 + 6.05345i) q^{29} +(0.196771 - 1.11595i) q^{31} +(3.65733 - 1.33116i) q^{32} +(-3.61329 - 4.90146i) q^{33} +(-1.47793 - 8.38176i) q^{34} +(2.10471 - 0.477957i) q^{36} +(-2.34734 + 4.06570i) q^{37} +(4.39311 + 1.59896i) q^{38} +(-0.289098 - 0.982452i) q^{39} +(4.43129 + 3.71830i) q^{41} +(-1.00044 - 3.39982i) q^{42} +(-2.03181 - 0.739520i) q^{43} +(1.26465 - 2.19044i) q^{44} +(-5.52022 - 9.56131i) q^{46} +(1.08312 + 6.14268i) q^{47} +(-5.05791 - 6.86110i) q^{48} +(5.13120 - 1.86760i) q^{49} +(-8.00727 + 3.97434i) q^{51} +(0.325858 - 0.273427i) q^{52} +8.21098 q^{53} +(-4.17926 - 7.48054i) q^{54} +(-2.00717 + 1.68421i) q^{56} +(0.308566 - 4.90059i) q^{57} +(-2.69677 + 15.2942i) q^{58} +(12.6981 - 4.62173i) q^{59} +(-1.38440 - 7.85133i) q^{61} +(-0.934331 - 1.61831i) q^{62} +(-3.12903 + 2.01608i) q^{63} +(-1.71215 + 2.96553i) q^{64} +(-9.76008 - 2.36173i) q^{66} +(-3.37266 - 2.83000i) q^{67} +(-2.84439 - 2.38673i) q^{68} +(-7.99725 + 8.39709i) q^{69} +(-3.43788 + 5.95458i) q^{71} +(-3.83078 + 5.04582i) q^{72} +(0.715668 + 1.23957i) q^{73} +(1.34436 + 7.62423i) q^{74} +(1.91656 - 0.697573i) q^{76} +(-0.757476 + 4.29586i) q^{77} +(-1.40661 - 0.934649i) q^{78} +(0.970806 - 0.814603i) q^{79} +(-6.29826 + 6.42899i) q^{81} +9.53928 q^{82} +(1.17090 - 0.982501i) q^{83} +(-1.28774 - 0.855668i) q^{84} +(-3.35061 + 1.21952i) q^{86} +(16.2100 - 1.81742i) q^{87} +(1.28920 + 7.31144i) q^{88} +(-6.52774 - 11.3064i) q^{89} +(-0.366811 + 0.635335i) q^{91} +(-4.52610 - 1.64736i) q^{92} +(-1.35358 + 1.42126i) q^{93} +(7.87952 + 6.61170i) q^{94} +(-6.55214 - 1.58548i) q^{96} +(-13.0234 - 4.74011i) q^{97} +(4.50238 - 7.79835i) q^{98} +(0.514163 + 10.5345i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{4} - 6 q^{6} + 18 q^{9} - 6 q^{11} + 18 q^{14} - 24 q^{16} + 6 q^{19} + 24 q^{21} + 30 q^{24} + 48 q^{26} + 30 q^{29} - 30 q^{31} + 24 q^{34} + 54 q^{36} + 6 q^{39} - 12 q^{41} - 78 q^{44}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.26326 1.06000i 0.893261 0.749535i −0.0756008 0.997138i \(-0.524087\pi\)
0.968861 + 0.247604i \(0.0796430\pi\)
\(3\) −1.44261 0.958575i −0.832893 0.553433i
\(4\) 0.124928 0.708504i 0.0624641 0.354252i
\(5\) 0 0
\(6\) −2.83849 + 0.318243i −1.15881 + 0.129922i
\(7\) 0.215456 + 1.22191i 0.0814348 + 0.461840i 0.998069 + 0.0621128i \(0.0197839\pi\)
−0.916634 + 0.399727i \(0.869105\pi\)
\(8\) 1.05587 + 1.82882i 0.373307 + 0.646587i
\(9\) 1.16227 + 2.76571i 0.387423 + 0.921902i
\(10\) 0 0
\(11\) 3.30366 + 1.20243i 0.996092 + 0.362548i 0.788076 0.615578i \(-0.211077\pi\)
0.208016 + 0.978125i \(0.433299\pi\)
\(12\) −0.859377 + 0.902344i −0.248081 + 0.260484i
\(13\) 0.452936 + 0.380059i 0.125622 + 0.105409i 0.703434 0.710760i \(-0.251649\pi\)
−0.577812 + 0.816170i \(0.696093\pi\)
\(14\) 1.56741 + 1.31521i 0.418907 + 0.351505i
\(15\) 0 0
\(16\) 4.62449 + 1.68318i 1.15612 + 0.420794i
\(17\) 2.58056 4.46967i 0.625879 1.08405i −0.362491 0.931987i \(-0.618074\pi\)
0.988370 0.152067i \(-0.0485929\pi\)
\(18\) 4.39990 + 2.26180i 1.03707 + 0.533112i
\(19\) 1.41748 + 2.45515i 0.325192 + 0.563250i 0.981551 0.191199i \(-0.0612376\pi\)
−0.656359 + 0.754449i \(0.727904\pi\)
\(20\) 0 0
\(21\) 0.860474 1.96928i 0.187771 0.429732i
\(22\) 5.44797 1.98290i 1.16151 0.422756i
\(23\) 1.16257 6.59324i 0.242412 1.37479i −0.584016 0.811742i \(-0.698519\pi\)
0.826427 0.563043i \(-0.190370\pi\)
\(24\) 0.229849 3.65042i 0.0469177 0.745139i
\(25\) 0 0
\(26\) 0.975040 0.191221
\(27\) 0.974431 5.10397i 0.187529 0.982259i
\(28\) 0.892646 0.168694
\(29\) −7.21421 + 6.05345i −1.33965 + 1.12410i −0.357929 + 0.933749i \(0.616517\pi\)
−0.981717 + 0.190348i \(0.939038\pi\)
\(30\) 0 0
\(31\) 0.196771 1.11595i 0.0353412 0.200430i −0.962025 0.272962i \(-0.911997\pi\)
0.997366 + 0.0725319i \(0.0231079\pi\)
\(32\) 3.65733 1.33116i 0.646531 0.235318i
\(33\) −3.61329 4.90146i −0.628992 0.853234i
\(34\) −1.47793 8.38176i −0.253463 1.43746i
\(35\) 0 0
\(36\) 2.10471 0.477957i 0.350785 0.0796595i
\(37\) −2.34734 + 4.06570i −0.385900 + 0.668398i −0.991894 0.127072i \(-0.959442\pi\)
0.605994 + 0.795469i \(0.292776\pi\)
\(38\) 4.39311 + 1.59896i 0.712657 + 0.259386i
\(39\) −0.289098 0.982452i −0.0462927 0.157318i
\(40\) 0 0
\(41\) 4.43129 + 3.71830i 0.692052 + 0.580700i 0.919500 0.393090i \(-0.128594\pi\)
−0.227448 + 0.973790i \(0.573038\pi\)
\(42\) −1.00044 3.39982i −0.154371 0.524603i
\(43\) −2.03181 0.739520i −0.309849 0.112776i 0.182415 0.983222i \(-0.441608\pi\)
−0.492264 + 0.870446i \(0.663831\pi\)
\(44\) 1.26465 2.19044i 0.190653 0.330221i
\(45\) 0 0
\(46\) −5.52022 9.56131i −0.813913 1.40974i
\(47\) 1.08312 + 6.14268i 0.157989 + 0.896002i 0.956002 + 0.293361i \(0.0947739\pi\)
−0.798012 + 0.602641i \(0.794115\pi\)
\(48\) −5.05791 6.86110i −0.730046 0.990314i
\(49\) 5.13120 1.86760i 0.733029 0.266801i
\(50\) 0 0
\(51\) −8.00727 + 3.97434i −1.12124 + 0.556519i
\(52\) 0.325858 0.273427i 0.0451883 0.0379175i
\(53\) 8.21098 1.12787 0.563933 0.825821i \(-0.309288\pi\)
0.563933 + 0.825821i \(0.309288\pi\)
\(54\) −4.17926 7.48054i −0.568725 1.01797i
\(55\) 0 0
\(56\) −2.00717 + 1.68421i −0.268219 + 0.225063i
\(57\) 0.308566 4.90059i 0.0408706 0.649099i
\(58\) −2.69677 + 15.2942i −0.354104 + 2.00822i
\(59\) 12.6981 4.62173i 1.65315 0.601698i 0.663886 0.747833i \(-0.268906\pi\)
0.989265 + 0.146136i \(0.0466836\pi\)
\(60\) 0 0
\(61\) −1.38440 7.85133i −0.177254 1.00526i −0.935509 0.353302i \(-0.885059\pi\)
0.758255 0.651958i \(-0.226052\pi\)
\(62\) −0.934331 1.61831i −0.118660 0.205525i
\(63\) −3.12903 + 2.01608i −0.394221 + 0.254002i
\(64\) −1.71215 + 2.96553i −0.214019 + 0.370691i
\(65\) 0 0
\(66\) −9.76008 2.36173i −1.20138 0.290709i
\(67\) −3.37266 2.83000i −0.412036 0.345739i 0.413088 0.910691i \(-0.364450\pi\)
−0.825124 + 0.564952i \(0.808895\pi\)
\(68\) −2.84439 2.38673i −0.344933 0.289433i
\(69\) −7.99725 + 8.39709i −0.962755 + 1.01089i
\(70\) 0 0
\(71\) −3.43788 + 5.95458i −0.408001 + 0.706679i −0.994666 0.103151i \(-0.967107\pi\)
0.586664 + 0.809830i \(0.300441\pi\)
\(72\) −3.83078 + 5.04582i −0.451462 + 0.594655i
\(73\) 0.715668 + 1.23957i 0.0837626 + 0.145081i 0.904863 0.425702i \(-0.139973\pi\)
−0.821101 + 0.570783i \(0.806640\pi\)
\(74\) 1.34436 + 7.62423i 0.156278 + 0.886298i
\(75\) 0 0
\(76\) 1.91656 0.697573i 0.219845 0.0800171i
\(77\) −0.757476 + 4.29586i −0.0863224 + 0.489559i
\(78\) −1.40661 0.934649i −0.159267 0.105828i
\(79\) 0.970806 0.814603i 0.109224 0.0916500i −0.586540 0.809920i \(-0.699510\pi\)
0.695764 + 0.718270i \(0.255066\pi\)
\(80\) 0 0
\(81\) −6.29826 + 6.42899i −0.699807 + 0.714332i
\(82\) 9.53928 1.05344
\(83\) 1.17090 0.982501i 0.128523 0.107844i −0.576260 0.817266i \(-0.695489\pi\)
0.704783 + 0.709423i \(0.251044\pi\)
\(84\) −1.28774 0.855668i −0.140504 0.0933610i
\(85\) 0 0
\(86\) −3.35061 + 1.21952i −0.361305 + 0.131504i
\(87\) 16.2100 1.81742i 1.73789 0.194848i
\(88\) 1.28920 + 7.31144i 0.137430 + 0.779402i
\(89\) −6.52774 11.3064i −0.691939 1.19847i −0.971202 0.238259i \(-0.923423\pi\)
0.279262 0.960215i \(-0.409910\pi\)
\(90\) 0 0
\(91\) −0.366811 + 0.635335i −0.0384522 + 0.0666012i
\(92\) −4.52610 1.64736i −0.471878 0.171750i
\(93\) −1.35358 + 1.42126i −0.140360 + 0.147378i
\(94\) 7.87952 + 6.61170i 0.812711 + 0.681945i
\(95\) 0 0
\(96\) −6.55214 1.58548i −0.668724 0.161817i
\(97\) −13.0234 4.74011i −1.32232 0.481286i −0.418120 0.908392i \(-0.637311\pi\)
−0.904202 + 0.427106i \(0.859533\pi\)
\(98\) 4.50238 7.79835i 0.454809 0.787753i
\(99\) 0.514163 + 10.5345i 0.0516753 + 1.05876i
\(100\) 0 0
\(101\) 2.04974 + 11.6247i 0.203957 + 1.15670i 0.899072 + 0.437800i \(0.144242\pi\)
−0.695115 + 0.718898i \(0.744647\pi\)
\(102\) −5.90246 + 13.5084i −0.584431 + 1.33753i
\(103\) 2.30128 0.837596i 0.226751 0.0825308i −0.226146 0.974093i \(-0.572613\pi\)
0.452897 + 0.891563i \(0.350390\pi\)
\(104\) −0.216818 + 1.22963i −0.0212607 + 0.120576i
\(105\) 0 0
\(106\) 10.3726 8.70366i 1.00748 0.845374i
\(107\) 6.83945 0.661195 0.330597 0.943772i \(-0.392750\pi\)
0.330597 + 0.943772i \(0.392750\pi\)
\(108\) −3.49445 1.32802i −0.336253 0.127789i
\(109\) −18.7944 −1.80018 −0.900088 0.435708i \(-0.856498\pi\)
−0.900088 + 0.435708i \(0.856498\pi\)
\(110\) 0 0
\(111\) 7.28358 3.61514i 0.691327 0.343134i
\(112\) −1.06032 + 6.01338i −0.100191 + 0.568211i
\(113\) −12.9670 + 4.71959i −1.21983 + 0.443982i −0.870103 0.492870i \(-0.835948\pi\)
−0.349727 + 0.936852i \(0.613726\pi\)
\(114\) −4.80484 6.51781i −0.450014 0.610449i
\(115\) 0 0
\(116\) 3.38763 + 5.86754i 0.314533 + 0.544788i
\(117\) −0.524697 + 1.69442i −0.0485083 + 0.156649i
\(118\) 11.1420 19.2985i 1.02570 1.77657i
\(119\) 6.01754 + 2.19021i 0.551627 + 0.200776i
\(120\) 0 0
\(121\) 1.04185 + 0.874216i 0.0947136 + 0.0794742i
\(122\) −10.0713 8.45081i −0.911811 0.765101i
\(123\) −2.82838 9.61179i −0.255026 0.866666i
\(124\) −0.766069 0.278826i −0.0687950 0.0250393i
\(125\) 0 0
\(126\) −1.81574 + 5.86362i −0.161759 + 0.522372i
\(127\) −4.27399 7.40277i −0.379255 0.656890i 0.611699 0.791091i \(-0.290486\pi\)
−0.990954 + 0.134201i \(0.957153\pi\)
\(128\) 2.33227 + 13.2270i 0.206146 + 1.16911i
\(129\) 2.22224 + 3.01449i 0.195657 + 0.265411i
\(130\) 0 0
\(131\) 1.68189 9.53845i 0.146947 0.833379i −0.818836 0.574028i \(-0.805380\pi\)
0.965783 0.259351i \(-0.0835087\pi\)
\(132\) −3.92410 + 1.94770i −0.341549 + 0.169525i
\(133\) −2.69457 + 2.26101i −0.233649 + 0.196055i
\(134\) −7.26035 −0.627198
\(135\) 0 0
\(136\) 10.8990 0.934580
\(137\) −11.3374 + 9.51323i −0.968622 + 0.812770i −0.982334 0.187136i \(-0.940080\pi\)
0.0137123 + 0.999906i \(0.495635\pi\)
\(138\) −1.20168 + 19.0848i −0.102294 + 1.62461i
\(139\) 0.474713 2.69223i 0.0402646 0.228352i −0.958034 0.286653i \(-0.907457\pi\)
0.998299 + 0.0583011i \(0.0185684\pi\)
\(140\) 0 0
\(141\) 4.32570 9.89977i 0.364289 0.833711i
\(142\) 1.96893 + 11.1664i 0.165229 + 0.937060i
\(143\) 1.03935 + 1.80021i 0.0869151 + 0.150541i
\(144\) 0.719730 + 14.7463i 0.0599775 + 1.22886i
\(145\) 0 0
\(146\) 2.21803 + 0.807296i 0.183565 + 0.0668123i
\(147\) −9.19258 2.22441i −0.758191 0.183466i
\(148\) 2.58732 + 2.17102i 0.212676 + 0.178456i
\(149\) 14.9253 + 12.5238i 1.22273 + 1.02599i 0.998677 + 0.0514162i \(0.0163735\pi\)
0.224054 + 0.974577i \(0.428071\pi\)
\(150\) 0 0
\(151\) −12.9070 4.69775i −1.05035 0.382297i −0.241557 0.970387i \(-0.577658\pi\)
−0.808796 + 0.588089i \(0.799880\pi\)
\(152\) −2.99336 + 5.18465i −0.242793 + 0.420530i
\(153\) 15.3611 + 1.94213i 1.24187 + 0.157012i
\(154\) 3.59673 + 6.22972i 0.289833 + 0.502005i
\(155\) 0 0
\(156\) −0.732187 + 0.0820907i −0.0586219 + 0.00657252i
\(157\) −11.1077 + 4.04287i −0.886491 + 0.322656i −0.744826 0.667258i \(-0.767468\pi\)
−0.141665 + 0.989915i \(0.545245\pi\)
\(158\) 0.362901 2.05811i 0.0288708 0.163735i
\(159\) −11.8453 7.87084i −0.939392 0.624198i
\(160\) 0 0
\(161\) 8.30684 0.654671
\(162\) −1.14161 + 14.7977i −0.0896932 + 1.16261i
\(163\) −13.4522 −1.05366 −0.526828 0.849972i \(-0.676619\pi\)
−0.526828 + 0.849972i \(0.676619\pi\)
\(164\) 3.18802 2.67507i 0.248943 0.208888i
\(165\) 0 0
\(166\) 0.437699 2.48231i 0.0339720 0.192665i
\(167\) −2.43207 + 0.885201i −0.188199 + 0.0684989i −0.434401 0.900720i \(-0.643040\pi\)
0.246201 + 0.969219i \(0.420818\pi\)
\(168\) 4.51002 0.505650i 0.347955 0.0390117i
\(169\) −2.19672 12.4582i −0.168978 0.958324i
\(170\) 0 0
\(171\) −5.14273 + 6.77388i −0.393274 + 0.518011i
\(172\) −0.777784 + 1.34716i −0.0593055 + 0.102720i
\(173\) −15.5458 5.65820i −1.18192 0.430185i −0.325042 0.945699i \(-0.605379\pi\)
−0.856881 + 0.515515i \(0.827601\pi\)
\(174\) 18.5510 19.4785i 1.40635 1.47666i
\(175\) 0 0
\(176\) 13.2539 + 11.1213i 0.999047 + 0.838300i
\(177\) −22.7487 5.50470i −1.70990 0.413759i
\(178\) −20.2310 7.36349i −1.51638 0.551917i
\(179\) 0.606831 1.05106i 0.0453567 0.0785601i −0.842456 0.538765i \(-0.818891\pi\)
0.887812 + 0.460205i \(0.152224\pi\)
\(180\) 0 0
\(181\) 1.84215 + 3.19070i 0.136926 + 0.237163i 0.926332 0.376709i \(-0.122944\pi\)
−0.789405 + 0.613872i \(0.789611\pi\)
\(182\) 0.210078 + 1.19141i 0.0155720 + 0.0883135i
\(183\) −5.52893 + 12.6535i −0.408710 + 0.935373i
\(184\) 13.2854 4.83549i 0.979413 0.356477i
\(185\) 0 0
\(186\) −0.203391 + 3.23022i −0.0149134 + 0.236851i
\(187\) 13.8998 11.6633i 1.01645 0.852906i
\(188\) 4.48743 0.327279
\(189\) 6.44655 + 0.0909880i 0.468917 + 0.00661840i
\(190\) 0 0
\(191\) 2.91058 2.44226i 0.210602 0.176716i −0.531385 0.847131i \(-0.678328\pi\)
0.741987 + 0.670415i \(0.233884\pi\)
\(192\) 5.31265 2.63689i 0.383407 0.190301i
\(193\) 1.57899 8.95492i 0.113658 0.644589i −0.873747 0.486380i \(-0.838317\pi\)
0.987406 0.158209i \(-0.0505719\pi\)
\(194\) −21.4764 + 7.81678i −1.54192 + 0.561212i
\(195\) 0 0
\(196\) −0.682172 3.86879i −0.0487266 0.276342i
\(197\) 3.37091 + 5.83859i 0.240167 + 0.415982i 0.960762 0.277375i \(-0.0894643\pi\)
−0.720594 + 0.693357i \(0.756131\pi\)
\(198\) 11.8161 + 12.7628i 0.839736 + 0.907015i
\(199\) 5.30284 9.18479i 0.375909 0.651093i −0.614554 0.788875i \(-0.710664\pi\)
0.990463 + 0.137782i \(0.0439973\pi\)
\(200\) 0 0
\(201\) 2.15268 + 7.31553i 0.151838 + 0.515998i
\(202\) 14.9115 + 12.5123i 1.04917 + 0.880360i
\(203\) −8.95113 7.51089i −0.628246 0.527161i
\(204\) 1.81550 + 6.16969i 0.127110 + 0.431965i
\(205\) 0 0
\(206\) 2.01926 3.49746i 0.140688 0.243680i
\(207\) 19.5862 4.44780i 1.36133 0.309144i
\(208\) 1.45489 + 2.51995i 0.100879 + 0.174727i
\(209\) 1.73072 + 9.81541i 0.119717 + 0.678946i
\(210\) 0 0
\(211\) 16.7832 6.10860i 1.15541 0.420534i 0.307952 0.951402i \(-0.400356\pi\)
0.847454 + 0.530868i \(0.178134\pi\)
\(212\) 1.02578 5.81751i 0.0704511 0.399548i
\(213\) 10.6674 5.29470i 0.730921 0.362787i
\(214\) 8.64002 7.24983i 0.590619 0.495588i
\(215\) 0 0
\(216\) 10.3631 3.60708i 0.705122 0.245430i
\(217\) 1.40598 0.0954443
\(218\) −23.7422 + 19.9221i −1.60803 + 1.34929i
\(219\) 0.155791 2.47425i 0.0105274 0.167194i
\(220\) 0 0
\(221\) 2.86757 1.04371i 0.192894 0.0702075i
\(222\) 5.36900 12.2875i 0.360344 0.824682i
\(223\) −3.38789 19.2137i −0.226870 1.28664i −0.859078 0.511844i \(-0.828963\pi\)
0.632209 0.774798i \(-0.282149\pi\)
\(224\) 2.41456 + 4.18213i 0.161329 + 0.279431i
\(225\) 0 0
\(226\) −11.3779 + 19.7071i −0.756846 + 1.31090i
\(227\) 3.45732 + 1.25836i 0.229470 + 0.0835203i 0.454196 0.890902i \(-0.349927\pi\)
−0.224726 + 0.974422i \(0.572149\pi\)
\(228\) −3.43354 0.830843i −0.227392 0.0550239i
\(229\) 3.32291 + 2.78825i 0.219584 + 0.184253i 0.745943 0.666009i \(-0.231999\pi\)
−0.526360 + 0.850262i \(0.676443\pi\)
\(230\) 0 0
\(231\) 5.21065 5.47117i 0.342835 0.359976i
\(232\) −18.6880 6.80187i −1.22693 0.446564i
\(233\) −3.94398 + 6.83118i −0.258379 + 0.447525i −0.965808 0.259259i \(-0.916522\pi\)
0.707429 + 0.706784i \(0.249855\pi\)
\(234\) 1.13326 + 2.69667i 0.0740835 + 0.176287i
\(235\) 0 0
\(236\) −1.68816 9.57403i −0.109890 0.623216i
\(237\) −2.18136 + 0.244567i −0.141694 + 0.0158864i
\(238\) 9.92335 3.61180i 0.643235 0.234119i
\(239\) 4.95815 28.1191i 0.320716 1.81887i −0.217493 0.976062i \(-0.569788\pi\)
0.538210 0.842811i \(-0.319101\pi\)
\(240\) 0 0
\(241\) −10.0815 + 8.45937i −0.649405 + 0.544916i −0.906890 0.421367i \(-0.861551\pi\)
0.257485 + 0.966282i \(0.417106\pi\)
\(242\) 2.24280 0.144173
\(243\) 15.2486 3.23719i 0.978200 0.207666i
\(244\) −5.73565 −0.367187
\(245\) 0 0
\(246\) −13.7615 9.14411i −0.877401 0.583007i
\(247\) −0.291072 + 1.65075i −0.0185205 + 0.105035i
\(248\) 2.24863 0.818435i 0.142788 0.0519707i
\(249\) −2.63096 + 0.294975i −0.166730 + 0.0186933i
\(250\) 0 0
\(251\) −13.5512 23.4713i −0.855341 1.48149i −0.876328 0.481715i \(-0.840014\pi\)
0.0209869 0.999780i \(-0.493319\pi\)
\(252\) 1.03749 + 2.46880i 0.0653560 + 0.155520i
\(253\) 11.7687 20.3839i 0.739890 1.28153i
\(254\) −13.2461 4.82119i −0.831135 0.302509i
\(255\) 0 0
\(256\) 11.7205 + 9.83471i 0.732534 + 0.614669i
\(257\) 1.44970 + 1.21645i 0.0904300 + 0.0758798i 0.686882 0.726769i \(-0.258979\pi\)
−0.596452 + 0.802649i \(0.703423\pi\)
\(258\) 6.00263 + 1.45251i 0.373708 + 0.0904292i
\(259\) −5.47368 1.99226i −0.340118 0.123793i
\(260\) 0 0
\(261\) −25.1269 12.9167i −1.55532 0.799522i
\(262\) −7.98612 13.8324i −0.493384 0.854566i
\(263\) 3.65398 + 20.7228i 0.225314 + 1.27782i 0.862084 + 0.506766i \(0.169159\pi\)
−0.636770 + 0.771054i \(0.719730\pi\)
\(264\) 5.14874 11.7834i 0.316883 0.725217i
\(265\) 0 0
\(266\) −1.00727 + 5.71250i −0.0617596 + 0.350256i
\(267\) −1.42100 + 22.5681i −0.0869638 + 1.38114i
\(268\) −2.42640 + 2.03599i −0.148216 + 0.124368i
\(269\) −1.06528 −0.0649512 −0.0324756 0.999473i \(-0.510339\pi\)
−0.0324756 + 0.999473i \(0.510339\pi\)
\(270\) 0 0
\(271\) −5.32687 −0.323585 −0.161792 0.986825i \(-0.551727\pi\)
−0.161792 + 0.986825i \(0.551727\pi\)
\(272\) 19.4571 16.3264i 1.17976 0.989934i
\(273\) 1.13818 0.564927i 0.0688859 0.0341909i
\(274\) −4.23809 + 24.0354i −0.256032 + 1.45203i
\(275\) 0 0
\(276\) 4.95029 + 6.71511i 0.297972 + 0.404202i
\(277\) 2.98294 + 16.9171i 0.179228 + 1.01645i 0.933150 + 0.359487i \(0.117048\pi\)
−0.753923 + 0.656963i \(0.771841\pi\)
\(278\) −2.25408 3.90419i −0.135191 0.234158i
\(279\) 3.31508 0.752817i 0.198468 0.0450700i
\(280\) 0 0
\(281\) −11.6900 4.25480i −0.697365 0.253820i −0.0310798 0.999517i \(-0.509895\pi\)
−0.666286 + 0.745697i \(0.732117\pi\)
\(282\) −5.02929 17.0912i −0.299490 1.01777i
\(283\) 15.8689 + 13.3156i 0.943306 + 0.791528i 0.978158 0.207865i \(-0.0666514\pi\)
−0.0348514 + 0.999393i \(0.511096\pi\)
\(284\) 3.78936 + 3.17965i 0.224857 + 0.188677i
\(285\) 0 0
\(286\) 3.22120 + 1.17242i 0.190474 + 0.0693268i
\(287\) −3.58868 + 6.21578i −0.211833 + 0.366906i
\(288\) 7.93240 + 8.56794i 0.467421 + 0.504871i
\(289\) −4.81863 8.34611i −0.283449 0.490948i
\(290\) 0 0
\(291\) 14.2439 + 19.3220i 0.834993 + 1.13268i
\(292\) 0.967650 0.352196i 0.0566274 0.0206107i
\(293\) 1.08632 6.16081i 0.0634634 0.359919i −0.936494 0.350684i \(-0.885949\pi\)
0.999957 0.00923499i \(-0.00293963\pi\)
\(294\) −13.9705 + 6.93414i −0.814776 + 0.404407i
\(295\) 0 0
\(296\) −9.91394 −0.576236
\(297\) 9.35638 15.6901i 0.542912 0.910432i
\(298\) 32.1299 1.86123
\(299\) 3.03239 2.54448i 0.175367 0.147151i
\(300\) 0 0
\(301\) 0.465862 2.64203i 0.0268518 0.152284i
\(302\) −21.2845 + 7.74692i −1.22478 + 0.445785i
\(303\) 8.18613 18.7348i 0.470281 1.07628i
\(304\) 2.42268 + 13.7397i 0.138950 + 0.788025i
\(305\) 0 0
\(306\) 21.4637 13.8294i 1.22700 0.790573i
\(307\) 9.12444 15.8040i 0.520759 0.901981i −0.478949 0.877843i \(-0.658982\pi\)
0.999709 0.0241389i \(-0.00768441\pi\)
\(308\) 2.94900 + 1.07335i 0.168035 + 0.0611597i
\(309\) −4.12275 0.997617i −0.234535 0.0567525i
\(310\) 0 0
\(311\) −3.62362 3.04058i −0.205477 0.172416i 0.534242 0.845332i \(-0.320597\pi\)
−0.739719 + 0.672916i \(0.765042\pi\)
\(312\) 1.49148 1.56605i 0.0844385 0.0886602i
\(313\) −32.5545 11.8489i −1.84009 0.669737i −0.989620 0.143711i \(-0.954096\pi\)
−0.850469 0.526026i \(-0.823681\pi\)
\(314\) −9.74647 + 16.8814i −0.550025 + 0.952672i
\(315\) 0 0
\(316\) −0.455868 0.789587i −0.0256446 0.0444177i
\(317\) −0.179070 1.01556i −0.0100576 0.0570395i 0.979366 0.202095i \(-0.0647750\pi\)
−0.989424 + 0.145056i \(0.953664\pi\)
\(318\) −23.3068 + 2.61309i −1.30698 + 0.146535i
\(319\) −31.1122 + 11.3239i −1.74195 + 0.634018i
\(320\) 0 0
\(321\) −9.86669 6.55613i −0.550705 0.365927i
\(322\) 10.4937 8.80527i 0.584792 0.490699i
\(323\) 14.6316 0.814124
\(324\) 3.76813 + 5.26550i 0.209341 + 0.292528i
\(325\) 0 0
\(326\) −16.9936 + 14.2593i −0.941189 + 0.789752i
\(327\) 27.1130 + 18.0158i 1.49936 + 0.996278i
\(328\) −2.12123 + 12.0301i −0.117125 + 0.664251i
\(329\) −7.27246 + 2.64696i −0.400943 + 0.145931i
\(330\) 0 0
\(331\) 2.20443 + 12.5020i 0.121167 + 0.687170i 0.983511 + 0.180848i \(0.0578842\pi\)
−0.862344 + 0.506322i \(0.831005\pi\)
\(332\) −0.549827 0.952329i −0.0301757 0.0522658i
\(333\) −13.9728 1.76660i −0.765703 0.0968090i
\(334\) −2.13403 + 3.69624i −0.116769 + 0.202249i
\(335\) 0 0
\(336\) 7.29390 7.65858i 0.397915 0.417810i
\(337\) −7.11709 5.97195i −0.387693 0.325313i 0.428021 0.903769i \(-0.359211\pi\)
−0.815714 + 0.578456i \(0.803655\pi\)
\(338\) −15.9808 13.4095i −0.869239 0.729378i
\(339\) 23.2304 + 5.62126i 1.26170 + 0.305305i
\(340\) 0 0
\(341\) 1.99192 3.45010i 0.107868 0.186833i
\(342\) 0.683719 + 14.0085i 0.0369713 + 0.757492i
\(343\) 7.73027 + 13.3892i 0.417395 + 0.722950i
\(344\) −0.792885 4.49667i −0.0427495 0.242444i
\(345\) 0 0
\(346\) −25.6361 + 9.33077i −1.37820 + 0.501625i
\(347\) 4.36400 24.7495i 0.234272 1.32862i −0.609870 0.792502i \(-0.708778\pi\)
0.844142 0.536120i \(-0.180111\pi\)
\(348\) 0.737440 11.7119i 0.0395310 0.627823i
\(349\) 1.83471 1.53950i 0.0982096 0.0824076i −0.592361 0.805673i \(-0.701804\pi\)
0.690570 + 0.723265i \(0.257360\pi\)
\(350\) 0 0
\(351\) 2.38116 1.94143i 0.127097 0.103626i
\(352\) 13.6832 0.729319
\(353\) −9.80842 + 8.23024i −0.522049 + 0.438051i −0.865346 0.501176i \(-0.832901\pi\)
0.343296 + 0.939227i \(0.388457\pi\)
\(354\) −34.5726 + 17.1598i −1.83751 + 0.912034i
\(355\) 0 0
\(356\) −8.82611 + 3.21244i −0.467783 + 0.170259i
\(357\) −6.58151 8.92789i −0.348331 0.472514i
\(358\) −0.347542 1.97101i −0.0183682 0.104171i
\(359\) −0.774475 1.34143i −0.0408753 0.0707980i 0.844864 0.534981i \(-0.179681\pi\)
−0.885739 + 0.464183i \(0.846348\pi\)
\(360\) 0 0
\(361\) 5.48150 9.49423i 0.288500 0.499696i
\(362\) 5.70927 + 2.07800i 0.300073 + 0.109218i
\(363\) −0.664986 2.25985i −0.0349027 0.118611i
\(364\) 0.404312 + 0.339258i 0.0211917 + 0.0177819i
\(365\) 0 0
\(366\) 6.42824 + 21.8453i 0.336009 + 1.14187i
\(367\) −4.65249 1.69337i −0.242858 0.0883931i 0.217723 0.976011i \(-0.430137\pi\)
−0.460582 + 0.887617i \(0.652359\pi\)
\(368\) 16.4739 28.5336i 0.858760 1.48742i
\(369\) −5.13336 + 16.5773i −0.267232 + 0.862980i
\(370\) 0 0
\(371\) 1.76911 + 10.0331i 0.0918474 + 0.520893i
\(372\) 0.837866 + 1.13657i 0.0434413 + 0.0589285i
\(373\) −16.2628 + 5.91918i −0.842057 + 0.306484i −0.726798 0.686852i \(-0.758992\pi\)
−0.115260 + 0.993335i \(0.536770\pi\)
\(374\) 5.19594 29.4676i 0.268676 1.52374i
\(375\) 0 0
\(376\) −10.0903 + 8.46673i −0.520365 + 0.436638i
\(377\) −5.56825 −0.286779
\(378\) 8.24012 6.71841i 0.423826 0.345558i
\(379\) 8.91774 0.458073 0.229037 0.973418i \(-0.426442\pi\)
0.229037 + 0.973418i \(0.426442\pi\)
\(380\) 0 0
\(381\) −0.930389 + 14.7763i −0.0476653 + 0.757012i
\(382\) 1.08801 6.17043i 0.0556676 0.315707i
\(383\) 23.1914 8.44098i 1.18502 0.431314i 0.327051 0.945007i \(-0.393945\pi\)
0.857974 + 0.513693i \(0.171723\pi\)
\(384\) 9.31447 21.3171i 0.475327 1.08783i
\(385\) 0 0
\(386\) −7.49755 12.9861i −0.381615 0.660977i
\(387\) −0.316220 6.47892i −0.0160744 0.329342i
\(388\) −4.98537 + 8.63492i −0.253094 + 0.438372i
\(389\) 6.71441 + 2.44385i 0.340434 + 0.123908i 0.506579 0.862193i \(-0.330910\pi\)
−0.166145 + 0.986101i \(0.553132\pi\)
\(390\) 0 0
\(391\) −26.4695 22.2106i −1.33862 1.12324i
\(392\) 8.83341 + 7.41211i 0.446155 + 0.374368i
\(393\) −11.5696 + 12.1481i −0.583611 + 0.612790i
\(394\) 10.4473 + 3.80249i 0.526325 + 0.191567i
\(395\) 0 0
\(396\) 7.52797 + 0.951772i 0.378295 + 0.0478284i
\(397\) 2.23966 + 3.87921i 0.112405 + 0.194692i 0.916740 0.399485i \(-0.130811\pi\)
−0.804334 + 0.594177i \(0.797478\pi\)
\(398\) −3.03702 17.2238i −0.152232 0.863352i
\(399\) 6.05458 0.678822i 0.303108 0.0339836i
\(400\) 0 0
\(401\) 0.799427 4.53377i 0.0399215 0.226406i −0.958319 0.285700i \(-0.907774\pi\)
0.998241 + 0.0592942i \(0.0188850\pi\)
\(402\) 10.4739 + 6.95959i 0.522390 + 0.347113i
\(403\) 0.513250 0.430668i 0.0255668 0.0214531i
\(404\) 8.49220 0.422503
\(405\) 0 0
\(406\) −19.2692 −0.956313
\(407\) −12.6435 + 10.6092i −0.626717 + 0.525878i
\(408\) −15.7230 10.4475i −0.778406 0.517228i
\(409\) 2.13917 12.1318i 0.105775 0.599880i −0.885133 0.465339i \(-0.845933\pi\)
0.990908 0.134542i \(-0.0429563\pi\)
\(410\) 0 0
\(411\) 25.4747 2.85615i 1.25657 0.140883i
\(412\) −0.305945 1.73510i −0.0150728 0.0854823i
\(413\) 8.38323 + 14.5202i 0.412512 + 0.714491i
\(414\) 20.0278 26.3801i 0.984312 1.29651i
\(415\) 0 0
\(416\) 2.16246 + 0.787071i 0.106023 + 0.0385893i
\(417\) −3.26553 + 3.42880i −0.159914 + 0.167909i
\(418\) 12.5907 + 10.5649i 0.615832 + 0.516744i
\(419\) 12.8029 + 10.7429i 0.625462 + 0.524825i 0.899515 0.436890i \(-0.143920\pi\)
−0.274053 + 0.961715i \(0.588364\pi\)
\(420\) 0 0
\(421\) 7.93497 + 2.88809i 0.386727 + 0.140757i 0.528064 0.849205i \(-0.322918\pi\)
−0.141338 + 0.989961i \(0.545140\pi\)
\(422\) 14.7265 25.5070i 0.716875 1.24166i
\(423\) −15.7300 + 10.1350i −0.764818 + 0.492783i
\(424\) 8.66975 + 15.0164i 0.421040 + 0.729263i
\(425\) 0 0
\(426\) 7.86338 17.9961i 0.380982 0.871914i
\(427\) 9.29536 3.38323i 0.449834 0.163726i
\(428\) 0.854441 4.84578i 0.0413010 0.234229i
\(429\) 0.226253 3.59331i 0.0109236 0.173487i
\(430\) 0 0
\(431\) −11.6530 −0.561306 −0.280653 0.959809i \(-0.590551\pi\)
−0.280653 + 0.959809i \(0.590551\pi\)
\(432\) 13.0971 21.9631i 0.630136 1.05670i
\(433\) 10.8242 0.520178 0.260089 0.965585i \(-0.416248\pi\)
0.260089 + 0.965585i \(0.416248\pi\)
\(434\) 1.77612 1.49034i 0.0852567 0.0715388i
\(435\) 0 0
\(436\) −2.34795 + 13.3159i −0.112446 + 0.637716i
\(437\) 17.8353 6.49152i 0.853178 0.310531i
\(438\) −2.42590 3.29076i −0.115914 0.157239i
\(439\) 4.86673 + 27.6006i 0.232276 + 1.31731i 0.848274 + 0.529557i \(0.177642\pi\)
−0.615998 + 0.787748i \(0.711247\pi\)
\(440\) 0 0
\(441\) 11.1291 + 12.0207i 0.529956 + 0.572416i
\(442\) 2.51615 4.35811i 0.119681 0.207294i
\(443\) 26.3006 + 9.57265i 1.24958 + 0.454810i 0.880260 0.474491i \(-0.157368\pi\)
0.369321 + 0.929302i \(0.379590\pi\)
\(444\) −1.65142 5.61208i −0.0783728 0.266337i
\(445\) 0 0
\(446\) −24.6463 20.6807i −1.16704 0.979260i
\(447\) −9.52645 32.3741i −0.450586 1.53124i
\(448\) −3.99251 1.45315i −0.188628 0.0686551i
\(449\) 12.5470 21.7321i 0.592130 1.02560i −0.401815 0.915721i \(-0.631621\pi\)
0.993945 0.109878i \(-0.0350461\pi\)
\(450\) 0 0
\(451\) 10.1685 + 17.6123i 0.478815 + 0.829333i
\(452\) 1.72391 + 9.77675i 0.0810857 + 0.459860i
\(453\) 14.1166 + 19.1493i 0.663256 + 0.899714i
\(454\) 5.70136 2.07512i 0.267578 0.0973904i
\(455\) 0 0
\(456\) 9.28813 4.61009i 0.434956 0.215887i
\(457\) 12.8412 10.7750i 0.600686 0.504036i −0.290980 0.956729i \(-0.593981\pi\)
0.891666 + 0.452694i \(0.149537\pi\)
\(458\) 7.15325 0.334249
\(459\) −20.2985 17.5265i −0.947451 0.818067i
\(460\) 0 0
\(461\) 19.8382 16.6462i 0.923956 0.775291i −0.0507663 0.998711i \(-0.516166\pi\)
0.974722 + 0.223419i \(0.0717219\pi\)
\(462\) 0.782959 12.4348i 0.0364265 0.578520i
\(463\) −3.00727 + 17.0551i −0.139760 + 0.792616i 0.831667 + 0.555275i \(0.187387\pi\)
−0.971426 + 0.237341i \(0.923724\pi\)
\(464\) −43.5511 + 15.8513i −2.02181 + 0.735878i
\(465\) 0 0
\(466\) 2.25878 + 12.8102i 0.104636 + 0.593420i
\(467\) 6.19652 + 10.7327i 0.286741 + 0.496649i 0.973030 0.230679i \(-0.0740949\pi\)
−0.686289 + 0.727329i \(0.740762\pi\)
\(468\) 1.13495 + 0.583431i 0.0524632 + 0.0269691i
\(469\) 2.73135 4.73083i 0.126122 0.218449i
\(470\) 0 0
\(471\) 19.8995 + 4.81526i 0.916921 + 0.221875i
\(472\) 21.8599 + 18.3426i 1.00618 + 0.844288i
\(473\) −5.82321 4.88625i −0.267751 0.224670i
\(474\) −2.49638 + 2.62119i −0.114663 + 0.120395i
\(475\) 0 0
\(476\) 2.30353 3.98983i 0.105582 0.182874i
\(477\) 9.54337 + 22.7092i 0.436961 + 1.03978i
\(478\) −23.5429 40.7774i −1.07682 1.86512i
\(479\) −3.96462 22.4845i −0.181148 1.02734i −0.930805 0.365515i \(-0.880893\pi\)
0.749657 0.661826i \(-0.230218\pi\)
\(480\) 0 0
\(481\) −2.60840 + 0.949380i −0.118933 + 0.0432880i
\(482\) −3.76860 + 21.3728i −0.171655 + 0.973503i
\(483\) −11.9836 7.96273i −0.545271 0.362317i
\(484\) 0.749542 0.628940i 0.0340701 0.0285882i
\(485\) 0 0
\(486\) 15.8316 20.2530i 0.718134 0.918695i
\(487\) −3.22215 −0.146009 −0.0730047 0.997332i \(-0.523259\pi\)
−0.0730047 + 0.997332i \(0.523259\pi\)
\(488\) 12.8970 10.8218i 0.583818 0.489881i
\(489\) 19.4063 + 12.8949i 0.877583 + 0.583128i
\(490\) 0 0
\(491\) 24.5814 8.94691i 1.10934 0.403768i 0.278591 0.960410i \(-0.410132\pi\)
0.830753 + 0.556641i \(0.187910\pi\)
\(492\) −7.16333 + 0.803132i −0.322948 + 0.0362080i
\(493\) 8.44015 + 47.8665i 0.380125 + 2.15580i
\(494\) 1.38210 + 2.39387i 0.0621836 + 0.107705i
\(495\) 0 0
\(496\) 2.78830 4.82948i 0.125198 0.216850i
\(497\) −8.01669 2.91784i −0.359598 0.130883i
\(498\) −3.01091 + 3.16145i −0.134922 + 0.141668i
\(499\) −26.2418 22.0195i −1.17474 0.985727i −0.999999 0.00111367i \(-0.999646\pi\)
−0.174745 0.984614i \(-0.555910\pi\)
\(500\) 0 0
\(501\) 4.35707 + 1.05432i 0.194660 + 0.0471034i
\(502\) −41.9983 15.2861i −1.87447 0.682253i
\(503\) 7.93150 13.7378i 0.353648 0.612537i −0.633237 0.773958i \(-0.718274\pi\)
0.986886 + 0.161421i \(0.0516076\pi\)
\(504\) −6.99091 3.59373i −0.311400 0.160077i
\(505\) 0 0
\(506\) −6.74011 38.2250i −0.299634 1.69931i
\(507\) −8.77311 + 20.0781i −0.389628 + 0.891700i
\(508\) −5.77883 + 2.10332i −0.256394 + 0.0933198i
\(509\) 2.38054 13.5007i 0.105516 0.598410i −0.885497 0.464645i \(-0.846182\pi\)
0.991013 0.133765i \(-0.0427068\pi\)
\(510\) 0 0
\(511\) −1.36046 + 1.14156i −0.0601830 + 0.0504995i
\(512\) −1.63110 −0.0720849
\(513\) 13.9122 4.84240i 0.614240 0.213797i
\(514\) 3.12079 0.137652
\(515\) 0 0
\(516\) 2.41340 1.19787i 0.106244 0.0527333i
\(517\) −3.80791 + 21.5957i −0.167472 + 0.949779i
\(518\) −9.02649 + 3.28537i −0.396601 + 0.144351i
\(519\) 17.0027 + 23.0644i 0.746337 + 1.01241i
\(520\) 0 0
\(521\) 13.9166 + 24.1042i 0.609697 + 1.05603i 0.991290 + 0.131696i \(0.0420422\pi\)
−0.381593 + 0.924330i \(0.624625\pi\)
\(522\) −45.4335 + 10.3174i −1.98857 + 0.451583i
\(523\) −4.58572 + 7.94269i −0.200519 + 0.347310i −0.948696 0.316190i \(-0.897596\pi\)
0.748177 + 0.663500i \(0.230930\pi\)
\(524\) −6.54791 2.38325i −0.286047 0.104113i
\(525\) 0 0
\(526\) 26.5821 + 22.3050i 1.15903 + 0.972545i
\(527\) −4.48012 3.75927i −0.195157 0.163756i
\(528\) −8.45959 28.7486i −0.368156 1.25112i
\(529\) −20.5063 7.46369i −0.891579 0.324508i
\(530\) 0 0
\(531\) 27.5409 + 29.7475i 1.19518 + 1.29093i
\(532\) 1.26531 + 2.19158i 0.0548581 + 0.0950170i
\(533\) 0.593923 + 3.36830i 0.0257257 + 0.145897i
\(534\) 22.1271 + 30.0156i 0.957533 + 1.29890i
\(535\) 0 0
\(536\) 1.61447 9.15611i 0.0697345 0.395484i
\(537\) −1.88294 + 0.934584i −0.0812550 + 0.0403303i
\(538\) −1.34572 + 1.12920i −0.0580183 + 0.0486832i
\(539\) 19.1974 0.826892
\(540\) 0 0
\(541\) 25.6800 1.10407 0.552035 0.833821i \(-0.313852\pi\)
0.552035 + 0.833821i \(0.313852\pi\)
\(542\) −6.72923 + 5.64650i −0.289045 + 0.242538i
\(543\) 0.401012 6.36879i 0.0172091 0.273311i
\(544\) 3.48814 19.7822i 0.149553 0.848155i
\(545\) 0 0
\(546\) 0.838997 1.92013i 0.0359058 0.0821738i
\(547\) 6.83888 + 38.7852i 0.292409 + 1.65834i 0.677549 + 0.735477i \(0.263042\pi\)
−0.385140 + 0.922858i \(0.625847\pi\)
\(548\) 5.32379 + 9.22108i 0.227421 + 0.393905i
\(549\) 20.1054 12.9542i 0.858079 0.552872i
\(550\) 0 0
\(551\) −25.0881 9.13133i −1.06879 0.389008i
\(552\) −23.8009 5.75930i −1.01303 0.245132i
\(553\) 1.20454 + 1.01073i 0.0512222 + 0.0429806i
\(554\) 21.7004 + 18.2088i 0.921962 + 0.773618i
\(555\) 0 0
\(556\) −1.84815 0.672672i −0.0783790 0.0285276i
\(557\) −2.06550 + 3.57754i −0.0875178 + 0.151585i −0.906461 0.422289i \(-0.861227\pi\)
0.818944 + 0.573874i \(0.194560\pi\)
\(558\) 3.38982 4.46499i 0.143503 0.189018i
\(559\) −0.639222 1.10716i −0.0270362 0.0468281i
\(560\) 0 0
\(561\) −31.2322 + 3.50167i −1.31862 + 0.147840i
\(562\) −19.2776 + 7.01647i −0.813176 + 0.295972i
\(563\) −3.02191 + 17.1381i −0.127358 + 0.722286i 0.852521 + 0.522694i \(0.175073\pi\)
−0.979879 + 0.199592i \(0.936038\pi\)
\(564\) −6.47362 4.30153i −0.272589 0.181127i
\(565\) 0 0
\(566\) 34.1610 1.43590
\(567\) −9.21266 6.31076i −0.386895 0.265027i
\(568\) −14.5199 −0.609239
\(569\) 3.52883 2.96104i 0.147936 0.124133i −0.565816 0.824532i \(-0.691439\pi\)
0.713752 + 0.700398i \(0.246994\pi\)
\(570\) 0 0
\(571\) −2.79686 + 15.8618i −0.117045 + 0.663794i 0.868673 + 0.495386i \(0.164974\pi\)
−0.985717 + 0.168407i \(0.946138\pi\)
\(572\) 1.40530 0.511488i 0.0587586 0.0213864i
\(573\) −6.53993 + 0.733238i −0.273209 + 0.0306315i
\(574\) 2.05530 + 11.6562i 0.0857864 + 0.486519i
\(575\) 0 0
\(576\) −10.1918 1.28856i −0.424656 0.0536899i
\(577\) −13.8423 + 23.9756i −0.576262 + 0.998116i 0.419641 + 0.907690i \(0.362156\pi\)
−0.995903 + 0.0904254i \(0.971177\pi\)
\(578\) −14.9341 5.43556i −0.621176 0.226089i
\(579\) −10.8618 + 11.4049i −0.451403 + 0.473972i
\(580\) 0 0
\(581\) 1.45281 + 1.21905i 0.0602726 + 0.0505748i
\(582\) 38.4752 + 9.31017i 1.59485 + 0.385919i
\(583\) 27.1263 + 9.87317i 1.12346 + 0.408905i
\(584\) −1.51131 + 2.61766i −0.0625384 + 0.108320i
\(585\) 0 0
\(586\) −5.15817 8.93422i −0.213082 0.369069i
\(587\) −2.96430 16.8114i −0.122350 0.693880i −0.982847 0.184424i \(-0.940958\pi\)
0.860497 0.509455i \(-0.170153\pi\)
\(588\) −2.72441 + 6.23508i −0.112353 + 0.257130i
\(589\) 3.01873 1.09873i 0.124385 0.0452723i
\(590\) 0 0
\(591\) 0.733801 11.6541i 0.0301845 0.479385i
\(592\) −17.6985 + 14.8508i −0.727405 + 0.610366i
\(593\) 7.85373 0.322514 0.161257 0.986912i \(-0.448445\pi\)
0.161257 + 0.986912i \(0.448445\pi\)
\(594\) −4.81198 29.7385i −0.197438 1.22018i
\(595\) 0 0
\(596\) 10.7378 9.01007i 0.439837 0.369067i
\(597\) −16.4543 + 8.16694i −0.673428 + 0.334251i
\(598\) 1.13355 6.42867i 0.0463543 0.262888i
\(599\) −45.0491 + 16.3965i −1.84066 + 0.669944i −0.851253 + 0.524756i \(0.824157\pi\)
−0.989404 + 0.145188i \(0.953621\pi\)
\(600\) 0 0
\(601\) 4.31451 + 24.4688i 0.175993 + 0.998104i 0.936992 + 0.349351i \(0.113598\pi\)
−0.760999 + 0.648753i \(0.775291\pi\)
\(602\) −2.21206 3.83139i −0.0901567 0.156156i
\(603\) 3.90700 12.6170i 0.159105 0.513804i
\(604\) −4.94082 + 8.55775i −0.201039 + 0.348210i
\(605\) 0 0
\(606\) −9.51765 32.3442i −0.386628 1.31389i
\(607\) −34.1399 28.6468i −1.38570 1.16274i −0.967049 0.254590i \(-0.918060\pi\)
−0.418648 0.908148i \(-0.637496\pi\)
\(608\) 8.45239 + 7.09240i 0.342790 + 0.287635i
\(609\) 5.71327 + 19.4156i 0.231513 + 0.786761i
\(610\) 0 0
\(611\) −1.84400 + 3.19389i −0.0746001 + 0.129211i
\(612\) 3.29504 10.6408i 0.133194 0.430128i
\(613\) 2.94457 + 5.10015i 0.118930 + 0.205993i 0.919344 0.393455i \(-0.128720\pi\)
−0.800414 + 0.599448i \(0.795387\pi\)
\(614\) −5.22571 29.6365i −0.210893 1.19603i
\(615\) 0 0
\(616\) −8.65617 + 3.15059i −0.348767 + 0.126941i
\(617\) 5.33141 30.2359i 0.214635 1.21725i −0.666905 0.745143i \(-0.732381\pi\)
0.881539 0.472110i \(-0.156508\pi\)
\(618\) −6.26559 + 3.10987i −0.252039 + 0.125097i
\(619\) −34.9350 + 29.3139i −1.40416 + 1.17823i −0.444938 + 0.895561i \(0.646774\pi\)
−0.959219 + 0.282666i \(0.908781\pi\)
\(620\) 0 0
\(621\) −32.5188 12.3584i −1.30494 0.495924i
\(622\) −7.80060 −0.312776
\(623\) 12.4090 10.4124i 0.497155 0.417162i
\(624\) 0.316711 5.02994i 0.0126786 0.201359i
\(625\) 0 0
\(626\) −53.6846 + 19.5396i −2.14567 + 0.780960i
\(627\) 6.91204 15.8189i 0.276040 0.631745i
\(628\) 1.47672 + 8.37491i 0.0589277 + 0.334195i
\(629\) 12.1149 + 20.9836i 0.483053 + 0.836672i
\(630\) 0 0
\(631\) −6.80759 + 11.7911i −0.271006 + 0.469396i −0.969120 0.246591i \(-0.920690\pi\)
0.698114 + 0.715987i \(0.254023\pi\)
\(632\) 2.51481 + 0.915317i 0.100034 + 0.0364094i
\(633\) −30.0673 7.27564i −1.19507 0.289181i
\(634\) −1.30271 1.09310i −0.0517371 0.0434126i
\(635\) 0 0
\(636\) −7.05633 + 7.40913i −0.279802 + 0.293791i
\(637\) 3.03391 + 1.10425i 0.120208 + 0.0437520i
\(638\) −27.2995 + 47.2841i −1.08080 + 1.87199i
\(639\) −20.4644 2.58734i −0.809558 0.102354i
\(640\) 0 0
\(641\) 1.38566 + 7.85848i 0.0547304 + 0.310391i 0.999867 0.0162827i \(-0.00518316\pi\)
−0.945137 + 0.326674i \(0.894072\pi\)
\(642\) −19.4137 + 2.17661i −0.766198 + 0.0859039i
\(643\) −14.1909 + 5.16505i −0.559633 + 0.203690i −0.606321 0.795220i \(-0.707355\pi\)
0.0466885 + 0.998909i \(0.485133\pi\)
\(644\) 1.03776 5.88543i 0.0408935 0.231918i
\(645\) 0 0
\(646\) 18.4835 15.5095i 0.727225 0.610214i
\(647\) 44.8366 1.76271 0.881355 0.472455i \(-0.156632\pi\)
0.881355 + 0.472455i \(0.156632\pi\)
\(648\) −18.4077 4.73022i −0.723121 0.185821i
\(649\) 47.5075 1.86483
\(650\) 0 0
\(651\) −2.02829 1.34774i −0.0794950 0.0528221i
\(652\) −1.68056 + 9.53092i −0.0658157 + 0.373260i
\(653\) −17.5167 + 6.37556i −0.685482 + 0.249495i −0.661199 0.750210i \(-0.729952\pi\)
−0.0242823 + 0.999705i \(0.507730\pi\)
\(654\) 53.3477 5.98119i 2.08606 0.233883i
\(655\) 0 0
\(656\) 14.2339 + 24.6539i 0.555742 + 0.962573i
\(657\) −2.59650 + 3.42005i −0.101299 + 0.133429i
\(658\) −6.38123 + 11.0526i −0.248766 + 0.430876i
\(659\) 8.86949 + 3.22823i 0.345506 + 0.125754i 0.508944 0.860800i \(-0.330036\pi\)
−0.163438 + 0.986554i \(0.552258\pi\)
\(660\) 0 0
\(661\) −21.0425 17.6567i −0.818457 0.686767i 0.134153 0.990961i \(-0.457169\pi\)
−0.952610 + 0.304194i \(0.901613\pi\)
\(662\) 16.0369 + 13.4565i 0.623291 + 0.523003i
\(663\) −5.13727 1.24311i −0.199515 0.0482784i
\(664\) 3.03314 + 1.10397i 0.117709 + 0.0428425i
\(665\) 0 0
\(666\) −19.5239 + 12.5795i −0.756534 + 0.487446i
\(667\) 31.5248 + 54.6026i 1.22065 + 2.11422i
\(668\) 0.323334 + 1.83372i 0.0125102 + 0.0709486i
\(669\) −13.5303 + 30.9654i −0.523112 + 1.19719i
\(670\) 0 0
\(671\) 4.86712 27.6028i 0.187893 1.06559i
\(672\) 0.525616 8.34774i 0.0202761 0.322021i
\(673\) 20.4558 17.1645i 0.788514 0.661642i −0.156863 0.987620i \(-0.550138\pi\)
0.945377 + 0.325979i \(0.105694\pi\)
\(674\) −15.3210 −0.590144
\(675\) 0 0
\(676\) −9.10112 −0.350043
\(677\) −25.9121 + 21.7428i −0.995883 + 0.835645i −0.986409 0.164310i \(-0.947460\pi\)
−0.00947415 + 0.999955i \(0.503016\pi\)
\(678\) 35.3046 17.5232i 1.35587 0.672973i
\(679\) 2.98604 16.9347i 0.114594 0.649894i
\(680\) 0 0
\(681\) −3.78134 5.12942i −0.144901 0.196560i
\(682\) −1.14080 6.46982i −0.0436836 0.247742i
\(683\) −8.68268 15.0388i −0.332233 0.575445i 0.650716 0.759321i \(-0.274469\pi\)
−0.982949 + 0.183876i \(0.941136\pi\)
\(684\) 4.15684 + 4.48989i 0.158941 + 0.171675i
\(685\) 0 0
\(686\) 23.9579 + 8.71998i 0.914718 + 0.332930i
\(687\) −2.12093 7.20762i −0.0809183 0.274988i
\(688\) −8.15137 6.83981i −0.310768 0.260765i
\(689\) 3.71905 + 3.12066i 0.141685 + 0.118888i
\(690\) 0 0
\(691\) −13.7800 5.01549i −0.524214 0.190798i 0.0663389 0.997797i \(-0.478868\pi\)
−0.590553 + 0.806999i \(0.701090\pi\)
\(692\) −5.95096 + 10.3074i −0.226222 + 0.391827i
\(693\) −12.7615 + 2.89799i −0.484768 + 0.110085i
\(694\) −20.7216 35.8909i −0.786582 1.36240i
\(695\) 0 0
\(696\) 20.4394 + 27.7263i 0.774755 + 1.05096i
\(697\) 28.0548 10.2111i 1.06265 0.386773i
\(698\) 0.685839 3.88958i 0.0259594 0.147223i
\(699\) 12.2378 6.07415i 0.462877 0.229745i
\(700\) 0 0
\(701\) −28.8893 −1.09113 −0.545567 0.838067i \(-0.683686\pi\)
−0.545567 + 0.838067i \(0.683686\pi\)
\(702\) 0.950109 4.97657i 0.0358596 0.187829i
\(703\) −13.3092 −0.501966
\(704\) −9.22221 + 7.73836i −0.347575 + 0.291650i
\(705\) 0 0
\(706\) −3.66652 + 20.7939i −0.137991 + 0.782588i
\(707\) −13.7627 + 5.00922i −0.517600 + 0.188391i
\(708\) −6.74206 + 15.4299i −0.253382 + 0.579889i
\(709\) 0.360524 + 2.04463i 0.0135398 + 0.0767878i 0.990829 0.135122i \(-0.0431427\pi\)
−0.977289 + 0.211910i \(0.932032\pi\)
\(710\) 0 0
\(711\) 3.38129 + 1.73818i 0.126808 + 0.0651867i
\(712\) 13.7849 23.8762i 0.516612 0.894798i
\(713\) −7.12893 2.59472i −0.266981 0.0971730i
\(714\) −17.7777 4.30184i −0.665316 0.160992i
\(715\) 0 0
\(716\) −0.668871 0.561249i −0.0249969 0.0209749i
\(717\) −34.1070 + 35.8122i −1.27375 + 1.33743i
\(718\) −2.40028 0.873632i −0.0895778 0.0326037i
\(719\) −9.24248 + 16.0084i −0.344686 + 0.597014i −0.985297 0.170852i \(-0.945348\pi\)
0.640610 + 0.767866i \(0.278681\pi\)
\(720\) 0 0
\(721\) 1.51929 + 2.63149i 0.0565814 + 0.0980019i
\(722\) −3.13934 17.8041i −0.116834 0.662600i
\(723\) 22.6526 2.53975i 0.842460 0.0944542i
\(724\) 2.49076 0.906563i 0.0925684 0.0336921i
\(725\) 0 0
\(726\) −3.23549 2.14989i −0.120080 0.0797899i
\(727\) 31.4598 26.3979i 1.16678 0.979045i 0.166804 0.985990i \(-0.446655\pi\)
0.999976 + 0.00694522i \(0.00221075\pi\)
\(728\) −1.54922 −0.0574179
\(729\) −25.1010 9.94693i −0.929666 0.368405i
\(730\) 0 0
\(731\) −8.54864 + 7.17316i −0.316183 + 0.265309i
\(732\) 8.27432 + 5.49804i 0.305828 + 0.203214i
\(733\) 0.580566 3.29255i 0.0214437 0.121613i −0.972207 0.234123i \(-0.924778\pi\)
0.993651 + 0.112510i \(0.0358891\pi\)
\(734\) −7.67229 + 2.79248i −0.283189 + 0.103072i
\(735\) 0 0
\(736\) −4.52477 25.6612i −0.166785 0.945886i
\(737\) −7.73924 13.4048i −0.285078 0.493770i
\(738\) 11.0872 + 26.3829i 0.408126 + 0.971166i
\(739\) −9.86291 + 17.0831i −0.362813 + 0.628411i −0.988423 0.151726i \(-0.951517\pi\)
0.625610 + 0.780136i \(0.284850\pi\)
\(740\) 0 0
\(741\) 2.00227 2.10238i 0.0735554 0.0772330i
\(742\) 12.8700 + 10.7992i 0.472471 + 0.396450i
\(743\) −17.2023 14.4345i −0.631092 0.529549i 0.270176 0.962811i \(-0.412918\pi\)
−0.901268 + 0.433262i \(0.857362\pi\)
\(744\) −4.02844 0.974796i −0.147690 0.0357378i
\(745\) 0 0
\(746\) −14.2698 + 24.7161i −0.522456 + 0.904921i
\(747\) 4.07821 + 2.09643i 0.149214 + 0.0767045i
\(748\) −6.52702 11.3051i −0.238652 0.413357i
\(749\) 1.47360 + 8.35721i 0.0538442 + 0.305366i
\(750\) 0 0
\(751\) −23.9497 + 8.71699i −0.873938 + 0.318088i −0.739761 0.672870i \(-0.765061\pi\)
−0.134177 + 0.990957i \(0.542839\pi\)
\(752\) −5.33034 + 30.2299i −0.194378 + 1.10237i
\(753\) −2.94990 + 46.8498i −0.107500 + 1.70730i
\(754\) −7.03415 + 5.90235i −0.256169 + 0.214951i
\(755\) 0 0
\(756\) 0.869822 4.55604i 0.0316351 0.165701i
\(757\) −43.0981 −1.56643 −0.783214 0.621753i \(-0.786421\pi\)
−0.783214 + 0.621753i \(0.786421\pi\)
\(758\) 11.2654 9.45282i 0.409179 0.343342i
\(759\) −36.5172 + 18.1250i −1.32549 + 0.657896i
\(760\) 0 0
\(761\) −26.5013 + 9.64570i −0.960673 + 0.349656i −0.774297 0.632822i \(-0.781896\pi\)
−0.186376 + 0.982479i \(0.559674\pi\)
\(762\) 14.4876 + 19.6525i 0.524829 + 0.711935i
\(763\) −4.04937 22.9651i −0.146597 0.831393i
\(764\) −1.36674 2.36726i −0.0494469 0.0856445i
\(765\) 0 0
\(766\) 20.3493 35.2461i 0.735251 1.27349i
\(767\) 7.50796 + 2.73267i 0.271097 + 0.0986711i
\(768\) −7.48092 25.4227i −0.269945 0.917363i
\(769\) −0.986304 0.827608i −0.0355670 0.0298443i 0.624831 0.780760i \(-0.285168\pi\)
−0.660398 + 0.750916i \(0.729612\pi\)
\(770\) 0 0
\(771\) −0.925308 3.14451i −0.0333241 0.113247i
\(772\) −6.14733 2.23745i −0.221247 0.0805274i
\(773\) 2.44988 4.24332i 0.0881162 0.152622i −0.818599 0.574366i \(-0.805249\pi\)
0.906715 + 0.421744i \(0.138582\pi\)
\(774\) −7.26714 7.84938i −0.261212 0.282140i
\(775\) 0 0
\(776\) −5.08217 28.8224i −0.182439 1.03466i
\(777\) 5.98668 + 8.12099i 0.214771 + 0.291339i
\(778\) 11.0725 4.03007i 0.396970 0.144485i
\(779\) −2.84770 + 16.1501i −0.102029 + 0.578637i
\(780\) 0 0
\(781\) −18.5176 + 15.5381i −0.662612 + 0.555997i
\(782\) −56.9812 −2.03764
\(783\) 23.8668 + 42.7198i 0.852931 + 1.52668i
\(784\) 26.8727 0.959739
\(785\) 0 0
\(786\) −1.73847 + 27.6101i −0.0620091 + 0.984818i
\(787\) 5.48979 31.1341i 0.195690 1.10981i −0.715743 0.698363i \(-0.753912\pi\)
0.911433 0.411448i \(-0.134977\pi\)
\(788\) 4.55778 1.65890i 0.162364 0.0590958i
\(789\) 14.5930 33.3975i 0.519525 1.18898i
\(790\) 0 0
\(791\) −8.56074 14.8276i −0.304385 0.527210i
\(792\) −18.7229 + 12.0634i −0.665289 + 0.428655i
\(793\) 2.35692 4.08231i 0.0836967 0.144967i
\(794\) 6.94125 + 2.52641i 0.246336 + 0.0896589i
\(795\) 0 0
\(796\) −5.84498 4.90452i −0.207170 0.173836i
\(797\) −19.8522 16.6580i −0.703202 0.590057i 0.219480 0.975617i \(-0.429564\pi\)
−0.922683 + 0.385560i \(0.874008\pi\)
\(798\) 6.92896 7.27539i 0.245283 0.257546i
\(799\) 30.2508 + 11.0104i 1.07020 + 0.389520i
\(800\) 0 0
\(801\) 23.6831 31.1949i 0.836802 1.10222i
\(802\) −3.79592 6.57473i −0.134039 0.232162i
\(803\) 0.873820 + 4.95568i 0.0308364 + 0.174882i
\(804\) 5.45201 0.611264i 0.192278 0.0215576i
\(805\) 0 0
\(806\) 0.191860 1.08809i 0.00675797 0.0383264i
\(807\) 1.53679 + 1.02115i 0.0540974 + 0.0359461i
\(808\) −19.0952 + 16.0228i −0.671768 + 0.563680i
\(809\) −16.8506 −0.592435 −0.296217 0.955121i \(-0.595725\pi\)
−0.296217 + 0.955121i \(0.595725\pi\)
\(810\) 0 0
\(811\) −26.5505 −0.932313 −0.466156 0.884702i \(-0.654362\pi\)
−0.466156 + 0.884702i \(0.654362\pi\)
\(812\) −6.43974 + 5.40358i −0.225991 + 0.189629i
\(813\) 7.68462 + 5.10621i 0.269511 + 0.179082i
\(814\) −4.72633 + 26.8044i −0.165658 + 0.939493i
\(815\) 0 0
\(816\) −43.7191 + 4.90166i −1.53047 + 0.171592i
\(817\) −1.06443 6.03666i −0.0372396 0.211196i
\(818\) −10.1574 17.5932i −0.355146 0.615132i
\(819\) −2.18348 0.276061i −0.0762970 0.00964634i
\(820\) 0 0
\(821\) 43.6959 + 15.9040i 1.52500 + 0.555054i 0.962390 0.271670i \(-0.0875760\pi\)
0.562608 + 0.826724i \(0.309798\pi\)
\(822\) 29.1536 30.6113i 1.01685 1.06769i
\(823\) −0.306870 0.257495i −0.0106968 0.00897570i 0.637424 0.770514i \(-0.280000\pi\)
−0.648120 + 0.761538i \(0.724445\pi\)
\(824\) 3.96167 + 3.32424i 0.138011 + 0.115805i
\(825\) 0 0
\(826\) 25.9816 + 9.45654i 0.904017 + 0.329035i
\(827\) 0.550903 0.954191i 0.0191568 0.0331805i −0.856288 0.516498i \(-0.827235\pi\)
0.875445 + 0.483318i \(0.160569\pi\)
\(828\) −0.704416 14.4325i −0.0244801 0.501565i
\(829\) 2.63061 + 4.55635i 0.0913648 + 0.158249i 0.908086 0.418784i \(-0.137544\pi\)
−0.816721 + 0.577033i \(0.804210\pi\)
\(830\) 0 0
\(831\) 11.9131 27.2642i 0.413260 0.945785i
\(832\) −1.90257 + 0.692479i −0.0659597 + 0.0240074i
\(833\) 4.89382 27.7542i 0.169561 0.961627i
\(834\) −0.490683 + 7.79295i −0.0169910 + 0.269848i
\(835\) 0 0
\(836\) 7.17047 0.247996
\(837\) −5.50401 2.09173i −0.190246 0.0723006i
\(838\) 27.5609 0.952075
\(839\) 27.5648 23.1296i 0.951642 0.798523i −0.0279310 0.999610i \(-0.508892\pi\)
0.979573 + 0.201087i \(0.0644474\pi\)
\(840\) 0 0
\(841\) 10.3649 58.7823i 0.357410 2.02698i
\(842\) 13.0853 4.76267i 0.450950 0.164132i
\(843\) 12.7856 + 17.3437i 0.440358 + 0.597350i
\(844\) −2.23126 12.6541i −0.0768033 0.435573i
\(845\) 0 0
\(846\) −9.12791 + 29.4770i −0.313824 + 1.01344i
\(847\) −0.843742 + 1.46140i −0.0289913 + 0.0502145i
\(848\) 37.9716 + 13.8205i 1.30395 + 0.474599i
\(849\) −10.1287 34.4207i −0.347616 1.18132i
\(850\) 0 0
\(851\) 24.0772 + 20.2032i 0.825357 + 0.692557i
\(852\) −2.41865 8.21938i −0.0828615 0.281591i
\(853\) −0.376728 0.137118i −0.0128989 0.00469483i 0.335563 0.942018i \(-0.391074\pi\)
−0.348462 + 0.937323i \(0.613296\pi\)
\(854\) 8.15623 14.1270i 0.279101 0.483416i
\(855\) 0 0
\(856\) 7.22159 + 12.5082i 0.246829 + 0.427520i
\(857\) 6.70198 + 38.0088i 0.228935 + 1.29836i 0.855018 + 0.518599i \(0.173546\pi\)
−0.626083 + 0.779757i \(0.715343\pi\)
\(858\) −3.52310 4.77912i −0.120277 0.163156i
\(859\) −16.0641 + 5.84684i −0.548099 + 0.199492i −0.601202 0.799097i \(-0.705311\pi\)
0.0531029 + 0.998589i \(0.483089\pi\)
\(860\) 0 0
\(861\) 11.1354 5.52695i 0.379493 0.188358i
\(862\) −14.7208 + 12.3522i −0.501393 + 0.420719i
\(863\) −23.2510 −0.791472 −0.395736 0.918364i \(-0.629511\pi\)
−0.395736 + 0.918364i \(0.629511\pi\)
\(864\) −3.23038 19.9640i −0.109900 0.679190i
\(865\) 0 0
\(866\) 13.6738 11.4737i 0.464654 0.389891i
\(867\) −1.04895 + 16.6592i −0.0356242 + 0.565777i
\(868\) 0.175647 0.996144i 0.00596185 0.0338113i
\(869\) 4.18672 1.52384i 0.142025 0.0516928i
\(870\) 0 0
\(871\) −0.452035 2.56362i −0.0153166 0.0868648i
\(872\) −19.8445 34.3716i −0.672019 1.16397i
\(873\) −2.02688 41.5281i −0.0685995 1.40551i
\(874\) 15.6496 27.1059i 0.529356 0.916872i
\(875\) 0 0
\(876\) −1.73355 0.419482i −0.0585712 0.0141730i
\(877\) 0.600510 + 0.503887i 0.0202778 + 0.0170151i 0.652870 0.757470i \(-0.273565\pi\)
−0.632592 + 0.774485i \(0.718009\pi\)
\(878\) 35.4047 + 29.7080i 1.19485 + 1.00260i
\(879\) −7.47274 + 7.84636i −0.252049 + 0.264651i
\(880\) 0 0
\(881\) 4.60962 7.98410i 0.155302 0.268991i −0.777867 0.628429i \(-0.783698\pi\)
0.933169 + 0.359438i \(0.117032\pi\)
\(882\) 26.8009 + 3.38848i 0.902434 + 0.114096i
\(883\) 18.1599 + 31.4539i 0.611129 + 1.05851i 0.991050 + 0.133488i \(0.0426178\pi\)
−0.379921 + 0.925019i \(0.624049\pi\)
\(884\) −0.381232 2.16207i −0.0128222 0.0727183i
\(885\) 0 0
\(886\) 43.3716 15.7860i 1.45710 0.530340i
\(887\) −5.82770 + 33.0505i −0.195675 + 1.10973i 0.715779 + 0.698326i \(0.246072\pi\)
−0.911454 + 0.411401i \(0.865040\pi\)
\(888\) 14.3020 + 9.50326i 0.479943 + 0.318908i
\(889\) 8.12468 6.81741i 0.272493 0.228649i
\(890\) 0 0
\(891\) −28.5378 + 13.6660i −0.956051 + 0.457827i
\(892\) −14.0362 −0.469967
\(893\) −13.5459 + 11.3664i −0.453296 + 0.380361i
\(894\) −46.3510 30.7989i −1.55021 1.03007i
\(895\) 0 0
\(896\) −15.6597 + 5.69966i −0.523154 + 0.190412i
\(897\) −6.81363 + 0.763925i −0.227501 + 0.0255067i
\(898\) −7.18587 40.7531i −0.239796 1.35995i
\(899\) 5.33576 + 9.24181i 0.177958 + 0.308232i
\(900\) 0 0
\(901\) 21.1890 36.7004i 0.705907 1.22267i
\(902\) 31.5146 + 11.4704i 1.04932 + 0.381921i
\(903\) −3.20465 + 3.36487i −0.106644 + 0.111976i
\(904\) −22.3228 18.7310i −0.742444 0.622985i
\(905\) 0 0
\(906\) 38.1313 + 9.22696i 1.26683 + 0.306545i
\(907\) 9.18415 + 3.34276i 0.304955 + 0.110994i 0.489965 0.871742i \(-0.337010\pi\)
−0.185010 + 0.982737i \(0.559232\pi\)
\(908\) 1.32347 2.29232i 0.0439209 0.0760732i
\(909\) −29.7681 + 19.1800i −0.987345 + 0.636160i
\(910\) 0 0
\(911\) 6.63575 + 37.6332i 0.219852 + 1.24684i 0.872285 + 0.488998i \(0.162637\pi\)
−0.652433 + 0.757847i \(0.726252\pi\)
\(912\) 9.67553 22.1434i 0.320389 0.733241i
\(913\) 5.04965 1.83792i 0.167119 0.0608264i
\(914\) 4.80022 27.2234i 0.158777 0.900470i
\(915\) 0 0
\(916\) 2.39061 2.00596i 0.0789880 0.0662788i
\(917\) 12.0175 0.396854
\(918\) −44.2204 0.624136i −1.45949 0.0205996i
\(919\) 15.3144 0.505176 0.252588 0.967574i \(-0.418718\pi\)
0.252588 + 0.967574i \(0.418718\pi\)
\(920\) 0 0
\(921\) −28.3123 + 14.0526i −0.932924 + 0.463049i
\(922\) 7.41579 42.0570i 0.244226 1.38507i
\(923\) −3.82023 + 1.39045i −0.125745 + 0.0457673i
\(924\) −3.22538 4.37527i −0.106107 0.143936i
\(925\) 0 0
\(926\) 14.2794 + 24.7327i 0.469252 + 0.812768i
\(927\) 4.99125 + 5.39114i 0.163934 + 0.177068i
\(928\) −18.3267 + 31.7427i −0.601603 + 1.04201i
\(929\) −0.281736 0.102544i −0.00924347 0.00336435i 0.337394 0.941363i \(-0.390454\pi\)
−0.346638 + 0.937999i \(0.612677\pi\)
\(930\) 0 0
\(931\) 11.8586 + 9.95056i 0.388651 + 0.326117i
\(932\) 4.34720 + 3.64773i 0.142397 + 0.119485i
\(933\) 2.31286 + 7.85990i 0.0757198 + 0.257321i
\(934\) 19.2045 + 6.98986i 0.628390 + 0.228715i
\(935\) 0 0
\(936\) −3.65281 + 0.829512i −0.119396 + 0.0271135i
\(937\) −7.61820 13.1951i −0.248876 0.431065i 0.714338 0.699800i \(-0.246728\pi\)
−0.963214 + 0.268735i \(0.913394\pi\)
\(938\) −1.56429 8.87151i −0.0510758 0.289665i
\(939\) 35.6055 + 48.2992i 1.16194 + 1.57619i
\(940\) 0 0
\(941\) −1.63828 + 9.29115i −0.0534064 + 0.302883i −0.999797 0.0201414i \(-0.993588\pi\)
0.946391 + 0.323024i \(0.104699\pi\)
\(942\) 30.2425 15.0106i 0.985353 0.489072i
\(943\) 29.6673 24.8938i 0.966100 0.810654i
\(944\) 66.5014 2.16444
\(945\) 0 0
\(946\) −12.5357 −0.407570
\(947\) 43.2160 36.2626i 1.40433 1.17837i 0.445195 0.895433i \(-0.353134\pi\)
0.959137 0.282941i \(-0.0913102\pi\)
\(948\) −0.0992362 + 1.57605i −0.00322304 + 0.0511878i
\(949\) −0.146959 + 0.833444i −0.00477048 + 0.0270547i
\(950\) 0 0
\(951\) −0.715159 + 1.63671i −0.0231906 + 0.0530740i
\(952\) 2.34825 + 13.3176i 0.0761073 + 0.431626i
\(953\) 7.53769 + 13.0557i 0.244170 + 0.422915i 0.961898 0.273409i \(-0.0881512\pi\)
−0.717728 + 0.696324i \(0.754818\pi\)
\(954\) 36.1275 + 18.5716i 1.16967 + 0.601278i
\(955\) 0 0
\(956\) −19.3031 7.02574i −0.624306 0.227229i
\(957\) 55.7377 + 13.4873i 1.80174 + 0.435984i
\(958\) −28.8419 24.2012i −0.931840 0.781907i
\(959\) −14.0671 11.8037i −0.454249 0.381160i
\(960\) 0 0
\(961\) 27.9239 + 10.1635i 0.900770 + 0.327853i
\(962\) −2.28875 + 3.96422i −0.0737921 + 0.127812i
\(963\) 7.94928 + 18.9159i 0.256162 + 0.609557i
\(964\) 4.73403 + 8.19958i 0.152473 + 0.264091i
\(965\) 0 0
\(966\) −23.5789 + 2.64360i −0.758638 + 0.0850563i
\(967\) 8.26273 3.00739i 0.265711 0.0967110i −0.205729 0.978609i \(-0.565957\pi\)
0.471440 + 0.881898i \(0.343734\pi\)
\(968\) −0.498727 + 2.82842i −0.0160297 + 0.0909089i
\(969\) −21.1077 14.0255i −0.678079 0.450563i
\(970\) 0 0
\(971\) −1.79910 −0.0577358 −0.0288679 0.999583i \(-0.509190\pi\)
−0.0288679 + 0.999583i \(0.509190\pi\)
\(972\) −0.388579 11.2081i −0.0124637 0.359501i
\(973\) 3.39195 0.108741
\(974\) −4.07041 + 3.41548i −0.130424 + 0.109439i
\(975\) 0 0
\(976\) 6.81303 38.6386i 0.218080 1.23679i
\(977\) 11.9561 4.35167i 0.382510 0.139222i −0.143606 0.989635i \(-0.545870\pi\)
0.526116 + 0.850413i \(0.323648\pi\)
\(978\) 38.1839 4.28107i 1.22099 0.136893i
\(979\) −7.97027 45.2017i −0.254731 1.44465i
\(980\) 0 0
\(981\) −21.8441 51.9798i −0.697430 1.65959i
\(982\) 21.5690 37.3586i 0.688295 1.19216i
\(983\) −49.2740 17.9343i −1.57160 0.572015i −0.598242 0.801315i \(-0.704134\pi\)
−0.973356 + 0.229301i \(0.926356\pi\)
\(984\) 14.5919 15.3214i 0.465172 0.488429i
\(985\) 0 0
\(986\) 61.4007 + 51.5213i 1.95540 + 1.64077i
\(987\) 13.0287 + 3.15266i 0.414707 + 0.100350i
\(988\) 1.13320 + 0.412451i 0.0360519 + 0.0131218i
\(989\) −7.23795 + 12.5365i −0.230154 + 0.398638i
\(990\) 0 0
\(991\) −7.43264 12.8737i −0.236106 0.408947i 0.723488 0.690337i \(-0.242538\pi\)
−0.959593 + 0.281390i \(0.909204\pi\)
\(992\) −0.765844 4.34332i −0.0243156 0.137900i
\(993\) 8.80392 20.1486i 0.279384 0.639397i
\(994\) −13.2201 + 4.81172i −0.419316 + 0.152618i
\(995\) 0 0
\(996\) −0.119690 + 1.90089i −0.00379252 + 0.0602321i
\(997\) 17.3621 14.5685i 0.549864 0.461390i −0.325031 0.945703i \(-0.605375\pi\)
0.874895 + 0.484313i \(0.160930\pi\)
\(998\) −56.4909 −1.78819
\(999\) 18.4639 + 15.9425i 0.584172 + 0.504397i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.l.h.76.13 96
5.2 odd 4 135.2.p.a.49.13 yes 96
5.3 odd 4 135.2.p.a.49.4 96
5.4 even 2 inner 675.2.l.h.76.4 96
15.2 even 4 405.2.p.a.199.4 96
15.8 even 4 405.2.p.a.199.13 96
27.16 even 9 inner 675.2.l.h.151.13 96
135.38 even 36 405.2.p.a.289.4 96
135.43 odd 36 135.2.p.a.124.13 yes 96
135.92 even 36 405.2.p.a.289.13 96
135.97 odd 36 135.2.p.a.124.4 yes 96
135.124 even 18 inner 675.2.l.h.151.4 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.p.a.49.4 96 5.3 odd 4
135.2.p.a.49.13 yes 96 5.2 odd 4
135.2.p.a.124.4 yes 96 135.97 odd 36
135.2.p.a.124.13 yes 96 135.43 odd 36
405.2.p.a.199.4 96 15.2 even 4
405.2.p.a.199.13 96 15.8 even 4
405.2.p.a.289.4 96 135.38 even 36
405.2.p.a.289.13 96 135.92 even 36
675.2.l.h.76.4 96 5.4 even 2 inner
675.2.l.h.76.13 96 1.1 even 1 trivial
675.2.l.h.151.4 96 135.124 even 18 inner
675.2.l.h.151.13 96 27.16 even 9 inner