L(s) = 1 | + (4.05 + 3.24i)3-s − 13.2i·5-s + (−18.4 − 1.29i)7-s + (5.90 + 26.3i)9-s − 49.5·11-s + 28.7·13-s + (42.9 − 53.7i)15-s + 69.2·17-s + 24.7·19-s + (−70.7 − 65.2i)21-s + 85.5i·23-s − 50.2·25-s + (−61.5 + 126. i)27-s − 111.·29-s + 236. i·31-s + ⋯ |
L(s) = 1 | + (0.780 + 0.624i)3-s − 1.18i·5-s + (−0.997 − 0.0700i)7-s + (0.218 + 0.975i)9-s − 1.35·11-s + 0.614·13-s + (0.740 − 0.924i)15-s + 0.988·17-s + 0.299·19-s + (−0.734 − 0.678i)21-s + 0.775i·23-s − 0.402·25-s + (−0.439 + 0.898i)27-s − 0.714·29-s + 1.37i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.416 - 0.909i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.416 - 0.909i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.295735917\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.295735917\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-4.05 - 3.24i)T \) |
| 7 | \( 1 + (18.4 + 1.29i)T \) |
good | 5 | \( 1 + 13.2iT - 125T^{2} \) |
| 11 | \( 1 + 49.5T + 1.33e3T^{2} \) |
| 13 | \( 1 - 28.7T + 2.19e3T^{2} \) |
| 17 | \( 1 - 69.2T + 4.91e3T^{2} \) |
| 19 | \( 1 - 24.7T + 6.85e3T^{2} \) |
| 23 | \( 1 - 85.5iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 111.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 236. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 261. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 471.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 261. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 217.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 11.8T + 1.48e5T^{2} \) |
| 59 | \( 1 + 236. iT - 2.05e5T^{2} \) |
| 61 | \( 1 - 754.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 163. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 478. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 1.03e3iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 148.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 739. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 1.34e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 183. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.961528056307829936362808014598, −9.703491245169715193737696122776, −8.547776685886889345656668332691, −8.150880121974722225163497448273, −7.01343587813364621686538127001, −5.50931761369697648257566557883, −4.99331310491625738642237154395, −3.68079796880586125280204328519, −2.93899304589358541127430711914, −1.34694725343688880843320077342,
0.32534742908411260660608640945, 2.18212621944766898497752631455, 3.04447671578467982694640607541, 3.70331780011683430057135046770, 5.57480763507895204875964600272, 6.43992474640188549592203548342, 7.25363957529940780559777958623, 7.907797092816356443028987673116, 8.920663294108462880897965938928, 9.965754784025746385658049052320