Properties

Label 672.4.i.c.209.64
Level $672$
Weight $4$
Character 672.209
Analytic conductor $39.649$
Analytic rank $0$
Dimension $80$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,4,Mod(209,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.209"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 672.i (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.6492835239\)
Analytic rank: \(0\)
Dimension: \(80\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.64
Character \(\chi\) \(=\) 672.209
Dual form 672.4.i.c.209.62

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.05635 + 3.24747i) q^{3} -13.2397i q^{5} +(-18.4748 - 1.29729i) q^{7} +(5.90788 + 26.3457i) q^{9} -49.5250 q^{11} +28.7924 q^{13} +(42.9954 - 53.7046i) q^{15} +69.2560 q^{17} +24.7890 q^{19} +(-70.7271 - 65.2585i) q^{21} +85.5006i q^{23} -50.2885 q^{25} +(-61.5925 + 126.053i) q^{27} -111.594 q^{29} +236.812i q^{31} +(-200.891 - 160.831i) q^{33} +(-17.1756 + 244.600i) q^{35} +261.434i q^{37} +(116.792 + 93.5026i) q^{39} -471.089 q^{41} +261.133i q^{43} +(348.808 - 78.2183i) q^{45} -217.418 q^{47} +(339.634 + 47.9342i) q^{49} +(280.926 + 224.907i) q^{51} -11.8711 q^{53} +655.694i q^{55} +(100.553 + 80.5016i) q^{57} -236.528i q^{59} +754.519 q^{61} +(-74.9688 - 494.395i) q^{63} -381.202i q^{65} -163.127i q^{67} +(-277.661 + 346.820i) q^{69} +478.338i q^{71} +1038.37i q^{73} +(-203.988 - 163.310i) q^{75} +(914.963 + 64.2482i) q^{77} +148.084 q^{79} +(-659.194 + 311.295i) q^{81} +739.797i q^{83} -916.925i q^{85} +(-452.664 - 362.398i) q^{87} -1347.82 q^{89} +(-531.934 - 37.3521i) q^{91} +(-769.039 + 960.590i) q^{93} -328.198i q^{95} -183.115i q^{97} +(-292.588 - 1304.77i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 64 q^{7} + 104 q^{9} + 8 q^{15} - 976 q^{25} - 568 q^{39} - 4048 q^{49} - 1448 q^{57} + 2152 q^{63} - 4992 q^{79} + 1568 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.05635 + 3.24747i 0.780644 + 0.624976i
\(4\) 0 0
\(5\) 13.2397i 1.18419i −0.805868 0.592095i \(-0.798301\pi\)
0.805868 0.592095i \(-0.201699\pi\)
\(6\) 0 0
\(7\) −18.4748 1.29729i −0.997544 0.0700470i
\(8\) 0 0
\(9\) 5.90788 + 26.3457i 0.218810 + 0.975767i
\(10\) 0 0
\(11\) −49.5250 −1.35749 −0.678743 0.734376i \(-0.737475\pi\)
−0.678743 + 0.734376i \(0.737475\pi\)
\(12\) 0 0
\(13\) 28.7924 0.614276 0.307138 0.951665i \(-0.400629\pi\)
0.307138 + 0.951665i \(0.400629\pi\)
\(14\) 0 0
\(15\) 42.9954 53.7046i 0.740091 0.924432i
\(16\) 0 0
\(17\) 69.2560 0.988061 0.494031 0.869445i \(-0.335523\pi\)
0.494031 + 0.869445i \(0.335523\pi\)
\(18\) 0 0
\(19\) 24.7890 0.299315 0.149658 0.988738i \(-0.452183\pi\)
0.149658 + 0.988738i \(0.452183\pi\)
\(20\) 0 0
\(21\) −70.7271 65.2585i −0.734949 0.678122i
\(22\) 0 0
\(23\) 85.5006i 0.775135i 0.921841 + 0.387568i \(0.126685\pi\)
−0.921841 + 0.387568i \(0.873315\pi\)
\(24\) 0 0
\(25\) −50.2885 −0.402308
\(26\) 0 0
\(27\) −61.5925 + 126.053i −0.439018 + 0.898478i
\(28\) 0 0
\(29\) −111.594 −0.714569 −0.357284 0.933996i \(-0.616297\pi\)
−0.357284 + 0.933996i \(0.616297\pi\)
\(30\) 0 0
\(31\) 236.812i 1.37202i 0.727592 + 0.686010i \(0.240640\pi\)
−0.727592 + 0.686010i \(0.759360\pi\)
\(32\) 0 0
\(33\) −200.891 160.831i −1.05971 0.848396i
\(34\) 0 0
\(35\) −17.1756 + 244.600i −0.0829490 + 1.18128i
\(36\) 0 0
\(37\) 261.434i 1.16161i 0.814044 + 0.580804i \(0.197262\pi\)
−0.814044 + 0.580804i \(0.802738\pi\)
\(38\) 0 0
\(39\) 116.792 + 93.5026i 0.479531 + 0.383908i
\(40\) 0 0
\(41\) −471.089 −1.79443 −0.897217 0.441590i \(-0.854415\pi\)
−0.897217 + 0.441590i \(0.854415\pi\)
\(42\) 0 0
\(43\) 261.133i 0.926101i 0.886332 + 0.463051i \(0.153245\pi\)
−0.886332 + 0.463051i \(0.846755\pi\)
\(44\) 0 0
\(45\) 348.808 78.2183i 1.15549 0.259113i
\(46\) 0 0
\(47\) −217.418 −0.674757 −0.337379 0.941369i \(-0.609540\pi\)
−0.337379 + 0.941369i \(0.609540\pi\)
\(48\) 0 0
\(49\) 339.634 + 47.9342i 0.990187 + 0.139750i
\(50\) 0 0
\(51\) 280.926 + 224.907i 0.771324 + 0.617514i
\(52\) 0 0
\(53\) −11.8711 −0.0307665 −0.0153832 0.999882i \(-0.504897\pi\)
−0.0153832 + 0.999882i \(0.504897\pi\)
\(54\) 0 0
\(55\) 655.694i 1.60752i
\(56\) 0 0
\(57\) 100.553 + 80.5016i 0.233659 + 0.187065i
\(58\) 0 0
\(59\) 236.528i 0.521921i −0.965350 0.260960i \(-0.915961\pi\)
0.965350 0.260960i \(-0.0840392\pi\)
\(60\) 0 0
\(61\) 754.519 1.58371 0.791855 0.610709i \(-0.209116\pi\)
0.791855 + 0.610709i \(0.209116\pi\)
\(62\) 0 0
\(63\) −74.9688 494.395i −0.149923 0.988698i
\(64\) 0 0
\(65\) 381.202i 0.727420i
\(66\) 0 0
\(67\) 163.127i 0.297449i −0.988879 0.148725i \(-0.952483\pi\)
0.988879 0.148725i \(-0.0475168\pi\)
\(68\) 0 0
\(69\) −277.661 + 346.820i −0.484441 + 0.605105i
\(70\) 0 0
\(71\) 478.338i 0.799554i 0.916613 + 0.399777i \(0.130912\pi\)
−0.916613 + 0.399777i \(0.869088\pi\)
\(72\) 0 0
\(73\) 1038.37i 1.66482i 0.554157 + 0.832412i \(0.313041\pi\)
−0.554157 + 0.832412i \(0.686959\pi\)
\(74\) 0 0
\(75\) −203.988 163.310i −0.314059 0.251433i
\(76\) 0 0
\(77\) 914.963 + 64.2482i 1.35415 + 0.0950878i
\(78\) 0 0
\(79\) 148.084 0.210895 0.105448 0.994425i \(-0.466372\pi\)
0.105448 + 0.994425i \(0.466372\pi\)
\(80\) 0 0
\(81\) −659.194 + 311.295i −0.904244 + 0.427016i
\(82\) 0 0
\(83\) 739.797i 0.978353i 0.872185 + 0.489176i \(0.162703\pi\)
−0.872185 + 0.489176i \(0.837297\pi\)
\(84\) 0 0
\(85\) 916.925i 1.17005i
\(86\) 0 0
\(87\) −452.664 362.398i −0.557824 0.446588i
\(88\) 0 0
\(89\) −1347.82 −1.60527 −0.802635 0.596470i \(-0.796569\pi\)
−0.802635 + 0.596470i \(0.796569\pi\)
\(90\) 0 0
\(91\) −531.934 37.3521i −0.612767 0.0430282i
\(92\) 0 0
\(93\) −769.039 + 960.590i −0.857480 + 1.07106i
\(94\) 0 0
\(95\) 328.198i 0.354447i
\(96\) 0 0
\(97\) 183.115i 0.191675i −0.995397 0.0958375i \(-0.969447\pi\)
0.995397 0.0958375i \(-0.0305529\pi\)
\(98\) 0 0
\(99\) −292.588 1304.77i −0.297032 1.32459i
\(100\) 0 0
\(101\) 857.904i 0.845194i 0.906318 + 0.422597i \(0.138882\pi\)
−0.906318 + 0.422597i \(0.861118\pi\)
\(102\) 0 0
\(103\) 493.737i 0.472324i 0.971714 + 0.236162i \(0.0758896\pi\)
−0.971714 + 0.236162i \(0.924110\pi\)
\(104\) 0 0
\(105\) −864.000 + 936.403i −0.803026 + 0.870320i
\(106\) 0 0
\(107\) 583.614 0.527290 0.263645 0.964620i \(-0.415075\pi\)
0.263645 + 0.964620i \(0.415075\pi\)
\(108\) 0 0
\(109\) 1856.22i 1.63113i −0.578665 0.815565i \(-0.696426\pi\)
0.578665 0.815565i \(-0.303574\pi\)
\(110\) 0 0
\(111\) −848.999 + 1060.47i −0.725976 + 0.906802i
\(112\) 0 0
\(113\) 951.492i 0.792114i −0.918226 0.396057i \(-0.870378\pi\)
0.918226 0.396057i \(-0.129622\pi\)
\(114\) 0 0
\(115\) 1132.00 0.917908
\(116\) 0 0
\(117\) 170.102 + 758.558i 0.134410 + 0.599390i
\(118\) 0 0
\(119\) −1279.49 89.8449i −0.985634 0.0692107i
\(120\) 0 0
\(121\) 1121.73 0.842770
\(122\) 0 0
\(123\) −1910.90 1529.85i −1.40081 1.12148i
\(124\) 0 0
\(125\) 989.155i 0.707781i
\(126\) 0 0
\(127\) −2550.61 −1.78213 −0.891065 0.453876i \(-0.850041\pi\)
−0.891065 + 0.453876i \(0.850041\pi\)
\(128\) 0 0
\(129\) −848.020 + 1059.24i −0.578791 + 0.722956i
\(130\) 0 0
\(131\) 439.670i 0.293238i −0.989193 0.146619i \(-0.953161\pi\)
0.989193 0.146619i \(-0.0468391\pi\)
\(132\) 0 0
\(133\) −457.972 32.1585i −0.298580 0.0209661i
\(134\) 0 0
\(135\) 1668.90 + 815.464i 1.06397 + 0.519881i
\(136\) 0 0
\(137\) 1126.88i 0.702745i 0.936236 + 0.351373i \(0.114285\pi\)
−0.936236 + 0.351373i \(0.885715\pi\)
\(138\) 0 0
\(139\) 2419.55 1.47643 0.738215 0.674565i \(-0.235669\pi\)
0.738215 + 0.674565i \(0.235669\pi\)
\(140\) 0 0
\(141\) −881.921 706.057i −0.526745 0.421707i
\(142\) 0 0
\(143\) −1425.95 −0.833871
\(144\) 0 0
\(145\) 1477.47i 0.846186i
\(146\) 0 0
\(147\) 1222.01 + 1297.39i 0.685643 + 0.727938i
\(148\) 0 0
\(149\) 2049.54 1.12688 0.563439 0.826158i \(-0.309478\pi\)
0.563439 + 0.826158i \(0.309478\pi\)
\(150\) 0 0
\(151\) −288.181 −0.155310 −0.0776551 0.996980i \(-0.524743\pi\)
−0.0776551 + 0.996980i \(0.524743\pi\)
\(152\) 0 0
\(153\) 409.156 + 1824.60i 0.216198 + 0.964118i
\(154\) 0 0
\(155\) 3135.31 1.62473
\(156\) 0 0
\(157\) −2088.48 −1.06165 −0.530824 0.847482i \(-0.678117\pi\)
−0.530824 + 0.847482i \(0.678117\pi\)
\(158\) 0 0
\(159\) −48.1534 38.5511i −0.0240177 0.0192283i
\(160\) 0 0
\(161\) 110.919 1579.60i 0.0542959 0.773231i
\(162\) 0 0
\(163\) 4111.75i 1.97581i 0.155057 + 0.987906i \(0.450444\pi\)
−0.155057 + 0.987906i \(0.549556\pi\)
\(164\) 0 0
\(165\) −2129.35 + 2659.72i −1.00466 + 1.25490i
\(166\) 0 0
\(167\) −1224.94 −0.567598 −0.283799 0.958884i \(-0.591595\pi\)
−0.283799 + 0.958884i \(0.591595\pi\)
\(168\) 0 0
\(169\) −1368.00 −0.622665
\(170\) 0 0
\(171\) 146.451 + 653.085i 0.0654934 + 0.292062i
\(172\) 0 0
\(173\) 2451.51i 1.07737i 0.842508 + 0.538685i \(0.181079\pi\)
−0.842508 + 0.538685i \(0.818921\pi\)
\(174\) 0 0
\(175\) 929.068 + 65.2386i 0.401320 + 0.0281804i
\(176\) 0 0
\(177\) 768.118 959.439i 0.326188 0.407434i
\(178\) 0 0
\(179\) −926.214 −0.386751 −0.193376 0.981125i \(-0.561944\pi\)
−0.193376 + 0.981125i \(0.561944\pi\)
\(180\) 0 0
\(181\) −876.720 −0.360034 −0.180017 0.983664i \(-0.557615\pi\)
−0.180017 + 0.983664i \(0.557615\pi\)
\(182\) 0 0
\(183\) 3060.59 + 2450.28i 1.23631 + 0.989780i
\(184\) 0 0
\(185\) 3461.29 1.37556
\(186\) 0 0
\(187\) −3429.90 −1.34128
\(188\) 0 0
\(189\) 1301.43 2248.90i 0.500875 0.865520i
\(190\) 0 0
\(191\) 2476.56i 0.938208i −0.883143 0.469104i \(-0.844577\pi\)
0.883143 0.469104i \(-0.155423\pi\)
\(192\) 0 0
\(193\) 3130.49 1.16755 0.583776 0.811915i \(-0.301575\pi\)
0.583776 + 0.811915i \(0.301575\pi\)
\(194\) 0 0
\(195\) 1237.94 1546.29i 0.454620 0.567856i
\(196\) 0 0
\(197\) 85.4470 0.0309028 0.0154514 0.999881i \(-0.495081\pi\)
0.0154514 + 0.999881i \(0.495081\pi\)
\(198\) 0 0
\(199\) 3536.74i 1.25986i −0.776650 0.629932i \(-0.783083\pi\)
0.776650 0.629932i \(-0.216917\pi\)
\(200\) 0 0
\(201\) 529.749 661.699i 0.185899 0.232202i
\(202\) 0 0
\(203\) 2061.67 + 144.770i 0.712814 + 0.0500534i
\(204\) 0 0
\(205\) 6237.06i 2.12495i
\(206\) 0 0
\(207\) −2252.58 + 505.128i −0.756352 + 0.169608i
\(208\) 0 0
\(209\) −1227.68 −0.406317
\(210\) 0 0
\(211\) 1696.15i 0.553403i −0.960956 0.276701i \(-0.910759\pi\)
0.960956 0.276701i \(-0.0892413\pi\)
\(212\) 0 0
\(213\) −1553.39 + 1940.31i −0.499702 + 0.624167i
\(214\) 0 0
\(215\) 3457.31 1.09668
\(216\) 0 0
\(217\) 307.213 4375.04i 0.0961059 1.36865i
\(218\) 0 0
\(219\) −3372.08 + 4211.99i −1.04047 + 1.29964i
\(220\) 0 0
\(221\) 1994.05 0.606942
\(222\) 0 0
\(223\) 3936.51i 1.18210i −0.806635 0.591050i \(-0.798714\pi\)
0.806635 0.591050i \(-0.201286\pi\)
\(224\) 0 0
\(225\) −297.099 1324.89i −0.0880292 0.392559i
\(226\) 0 0
\(227\) 6229.85i 1.82154i −0.412912 0.910771i \(-0.635488\pi\)
0.412912 0.910771i \(-0.364512\pi\)
\(228\) 0 0
\(229\) 3973.83 1.14672 0.573359 0.819304i \(-0.305640\pi\)
0.573359 + 0.819304i \(0.305640\pi\)
\(230\) 0 0
\(231\) 3502.76 + 3231.93i 0.997683 + 0.920542i
\(232\) 0 0
\(233\) 3401.07i 0.956273i 0.878285 + 0.478137i \(0.158688\pi\)
−0.878285 + 0.478137i \(0.841312\pi\)
\(234\) 0 0
\(235\) 2878.53i 0.799042i
\(236\) 0 0
\(237\) 600.679 + 480.898i 0.164634 + 0.131804i
\(238\) 0 0
\(239\) 4477.57i 1.21184i −0.795525 0.605920i \(-0.792805\pi\)
0.795525 0.605920i \(-0.207195\pi\)
\(240\) 0 0
\(241\) 2312.70i 0.618151i −0.951037 0.309076i \(-0.899980\pi\)
0.951037 0.309076i \(-0.100020\pi\)
\(242\) 0 0
\(243\) −3684.84 877.992i −0.972768 0.231783i
\(244\) 0 0
\(245\) 634.632 4496.64i 0.165490 1.17257i
\(246\) 0 0
\(247\) 713.737 0.183862
\(248\) 0 0
\(249\) −2402.47 + 3000.87i −0.611447 + 0.763745i
\(250\) 0 0
\(251\) 4493.21i 1.12992i 0.825119 + 0.564958i \(0.191108\pi\)
−0.825119 + 0.564958i \(0.808892\pi\)
\(252\) 0 0
\(253\) 4234.42i 1.05224i
\(254\) 0 0
\(255\) 2977.69 3719.37i 0.731255 0.913395i
\(256\) 0 0
\(257\) −1431.96 −0.347562 −0.173781 0.984784i \(-0.555598\pi\)
−0.173781 + 0.984784i \(0.555598\pi\)
\(258\) 0 0
\(259\) 339.155 4829.93i 0.0813670 1.15875i
\(260\) 0 0
\(261\) −659.285 2940.03i −0.156355 0.697253i
\(262\) 0 0
\(263\) 902.626i 0.211629i 0.994386 + 0.105814i \(0.0337449\pi\)
−0.994386 + 0.105814i \(0.966255\pi\)
\(264\) 0 0
\(265\) 157.170i 0.0364334i
\(266\) 0 0
\(267\) −5467.24 4377.02i −1.25314 1.00325i
\(268\) 0 0
\(269\) 1889.72i 0.428321i 0.976798 + 0.214160i \(0.0687015\pi\)
−0.976798 + 0.214160i \(0.931298\pi\)
\(270\) 0 0
\(271\) 7620.90i 1.70825i 0.520065 + 0.854127i \(0.325908\pi\)
−0.520065 + 0.854127i \(0.674092\pi\)
\(272\) 0 0
\(273\) −2036.41 1878.95i −0.451461 0.416554i
\(274\) 0 0
\(275\) 2490.54 0.546128
\(276\) 0 0
\(277\) 2983.80i 0.647218i −0.946191 0.323609i \(-0.895104\pi\)
0.946191 0.323609i \(-0.104896\pi\)
\(278\) 0 0
\(279\) −6238.98 + 1399.06i −1.33877 + 0.300213i
\(280\) 0 0
\(281\) 2988.80i 0.634508i 0.948341 + 0.317254i \(0.102761\pi\)
−0.948341 + 0.317254i \(0.897239\pi\)
\(282\) 0 0
\(283\) −3150.99 −0.661861 −0.330930 0.943655i \(-0.607363\pi\)
−0.330930 + 0.943655i \(0.607363\pi\)
\(284\) 0 0
\(285\) 1065.81 1331.29i 0.221521 0.276697i
\(286\) 0 0
\(287\) 8703.27 + 611.138i 1.79003 + 0.125695i
\(288\) 0 0
\(289\) −116.610 −0.0237350
\(290\) 0 0
\(291\) 594.659 742.776i 0.119792 0.149630i
\(292\) 0 0
\(293\) 1635.98i 0.326194i −0.986610 0.163097i \(-0.947852\pi\)
0.986610 0.163097i \(-0.0521484\pi\)
\(294\) 0 0
\(295\) −3131.55 −0.618054
\(296\) 0 0
\(297\) 3050.37 6242.78i 0.595961 1.21967i
\(298\) 0 0
\(299\) 2461.77i 0.476147i
\(300\) 0 0
\(301\) 338.764 4824.37i 0.0648706 0.923827i
\(302\) 0 0
\(303\) −2786.02 + 3479.96i −0.528226 + 0.659796i
\(304\) 0 0
\(305\) 9989.58i 1.87541i
\(306\) 0 0
\(307\) −3788.51 −0.704305 −0.352152 0.935943i \(-0.614550\pi\)
−0.352152 + 0.935943i \(0.614550\pi\)
\(308\) 0 0
\(309\) −1603.40 + 2002.77i −0.295191 + 0.368717i
\(310\) 0 0
\(311\) 4998.37 0.911356 0.455678 0.890145i \(-0.349397\pi\)
0.455678 + 0.890145i \(0.349397\pi\)
\(312\) 0 0
\(313\) 1152.65i 0.208152i −0.994569 0.104076i \(-0.966812\pi\)
0.994569 0.104076i \(-0.0331885\pi\)
\(314\) 0 0
\(315\) −6545.62 + 992.561i −1.17081 + 0.177538i
\(316\) 0 0
\(317\) −2738.80 −0.485256 −0.242628 0.970119i \(-0.578009\pi\)
−0.242628 + 0.970119i \(0.578009\pi\)
\(318\) 0 0
\(319\) 5526.70 0.970018
\(320\) 0 0
\(321\) 2367.34 + 1895.27i 0.411626 + 0.329544i
\(322\) 0 0
\(323\) 1716.79 0.295742
\(324\) 0 0
\(325\) −1447.93 −0.247128
\(326\) 0 0
\(327\) 6028.01 7529.46i 1.01942 1.27333i
\(328\) 0 0
\(329\) 4016.74 + 282.053i 0.673100 + 0.0472647i
\(330\) 0 0
\(331\) 5222.20i 0.867184i −0.901109 0.433592i \(-0.857246\pi\)
0.901109 0.433592i \(-0.142754\pi\)
\(332\) 0 0
\(333\) −6887.66 + 1544.52i −1.13346 + 0.254172i
\(334\) 0 0
\(335\) −2159.74 −0.352237
\(336\) 0 0
\(337\) −2898.62 −0.468540 −0.234270 0.972172i \(-0.575270\pi\)
−0.234270 + 0.972172i \(0.575270\pi\)
\(338\) 0 0
\(339\) 3089.94 3859.58i 0.495052 0.618359i
\(340\) 0 0
\(341\) 11728.1i 1.86250i
\(342\) 0 0
\(343\) −6212.48 1326.18i −0.977966 0.208766i
\(344\) 0 0
\(345\) 4591.78 + 3676.13i 0.716560 + 0.573670i
\(346\) 0 0
\(347\) 10559.0 1.63353 0.816765 0.576970i \(-0.195765\pi\)
0.816765 + 0.576970i \(0.195765\pi\)
\(348\) 0 0
\(349\) −4344.86 −0.666404 −0.333202 0.942855i \(-0.608129\pi\)
−0.333202 + 0.942855i \(0.608129\pi\)
\(350\) 0 0
\(351\) −1773.40 + 3629.37i −0.269678 + 0.551914i
\(352\) 0 0
\(353\) 9819.24 1.48053 0.740263 0.672318i \(-0.234701\pi\)
0.740263 + 0.672318i \(0.234701\pi\)
\(354\) 0 0
\(355\) 6333.03 0.946824
\(356\) 0 0
\(357\) −4898.28 4519.54i −0.726175 0.670026i
\(358\) 0 0
\(359\) 728.937i 0.107164i −0.998563 0.0535820i \(-0.982936\pi\)
0.998563 0.0535820i \(-0.0170638\pi\)
\(360\) 0 0
\(361\) −6244.50 −0.910410
\(362\) 0 0
\(363\) 4550.11 + 3642.77i 0.657903 + 0.526711i
\(364\) 0 0
\(365\) 13747.7 1.97147
\(366\) 0 0
\(367\) 8207.43i 1.16737i −0.811981 0.583685i \(-0.801610\pi\)
0.811981 0.583685i \(-0.198390\pi\)
\(368\) 0 0
\(369\) −2783.14 12411.2i −0.392641 1.75095i
\(370\) 0 0
\(371\) 219.316 + 15.4003i 0.0306909 + 0.00215510i
\(372\) 0 0
\(373\) 6620.48i 0.919023i 0.888172 + 0.459511i \(0.151975\pi\)
−0.888172 + 0.459511i \(0.848025\pi\)
\(374\) 0 0
\(375\) 3212.25 4012.35i 0.442346 0.552525i
\(376\) 0 0
\(377\) −3213.07 −0.438942
\(378\) 0 0
\(379\) 2808.73i 0.380672i 0.981719 + 0.190336i \(0.0609578\pi\)
−0.981719 + 0.190336i \(0.939042\pi\)
\(380\) 0 0
\(381\) −10346.2 8283.04i −1.39121 1.11379i
\(382\) 0 0
\(383\) −2395.34 −0.319573 −0.159786 0.987152i \(-0.551081\pi\)
−0.159786 + 0.987152i \(0.551081\pi\)
\(384\) 0 0
\(385\) 850.624 12113.8i 0.112602 1.60357i
\(386\) 0 0
\(387\) −6879.73 + 1542.74i −0.903660 + 0.202641i
\(388\) 0 0
\(389\) 12078.7 1.57432 0.787162 0.616746i \(-0.211550\pi\)
0.787162 + 0.616746i \(0.211550\pi\)
\(390\) 0 0
\(391\) 5921.43i 0.765881i
\(392\) 0 0
\(393\) 1427.81 1783.45i 0.183266 0.228914i
\(394\) 0 0
\(395\) 1960.58i 0.249740i
\(396\) 0 0
\(397\) 5240.22 0.662466 0.331233 0.943549i \(-0.392535\pi\)
0.331233 + 0.943549i \(0.392535\pi\)
\(398\) 0 0
\(399\) −1753.26 1617.69i −0.219982 0.202973i
\(400\) 0 0
\(401\) 10649.8i 1.32625i −0.748509 0.663125i \(-0.769230\pi\)
0.748509 0.663125i \(-0.230770\pi\)
\(402\) 0 0
\(403\) 6818.39i 0.842799i
\(404\) 0 0
\(405\) 4121.44 + 8727.50i 0.505669 + 1.07080i
\(406\) 0 0
\(407\) 12947.5i 1.57687i
\(408\) 0 0
\(409\) 10197.5i 1.23284i 0.787416 + 0.616421i \(0.211418\pi\)
−0.787416 + 0.616421i \(0.788582\pi\)
\(410\) 0 0
\(411\) −3659.52 + 4571.03i −0.439199 + 0.548594i
\(412\) 0 0
\(413\) −306.845 + 4369.80i −0.0365590 + 0.520639i
\(414\) 0 0
\(415\) 9794.66 1.15856
\(416\) 0 0
\(417\) 9814.54 + 7857.43i 1.15257 + 0.922733i
\(418\) 0 0
\(419\) 9402.75i 1.09631i −0.836376 0.548155i \(-0.815330\pi\)
0.836376 0.548155i \(-0.184670\pi\)
\(420\) 0 0
\(421\) 1525.15i 0.176559i 0.996096 + 0.0882793i \(0.0281368\pi\)
−0.996096 + 0.0882793i \(0.971863\pi\)
\(422\) 0 0
\(423\) −1284.48 5728.02i −0.147644 0.658406i
\(424\) 0 0
\(425\) −3482.78 −0.397505
\(426\) 0 0
\(427\) −13939.6 978.829i −1.57982 0.110934i
\(428\) 0 0
\(429\) −5784.13 4630.72i −0.650957 0.521149i
\(430\) 0 0
\(431\) 7819.69i 0.873924i 0.899480 + 0.436962i \(0.143946\pi\)
−0.899480 + 0.436962i \(0.856054\pi\)
\(432\) 0 0
\(433\) 11246.6i 1.24821i 0.781340 + 0.624106i \(0.214536\pi\)
−0.781340 + 0.624106i \(0.785464\pi\)
\(434\) 0 0
\(435\) −4798.03 + 5993.12i −0.528846 + 0.660570i
\(436\) 0 0
\(437\) 2119.48i 0.232010i
\(438\) 0 0
\(439\) 5899.62i 0.641397i 0.947181 + 0.320698i \(0.103918\pi\)
−0.947181 + 0.320698i \(0.896082\pi\)
\(440\) 0 0
\(441\) 743.658 + 9231.09i 0.0803000 + 0.996771i
\(442\) 0 0
\(443\) −991.808 −0.106371 −0.0531854 0.998585i \(-0.516937\pi\)
−0.0531854 + 0.998585i \(0.516937\pi\)
\(444\) 0 0
\(445\) 17844.7i 1.90095i
\(446\) 0 0
\(447\) 8313.64 + 6655.81i 0.879690 + 0.704271i
\(448\) 0 0
\(449\) 13929.7i 1.46411i 0.681248 + 0.732053i \(0.261438\pi\)
−0.681248 + 0.732053i \(0.738562\pi\)
\(450\) 0 0
\(451\) 23330.7 2.43592
\(452\) 0 0
\(453\) −1168.96 935.859i −0.121242 0.0970651i
\(454\) 0 0
\(455\) −494.529 + 7042.62i −0.0509535 + 0.725633i
\(456\) 0 0
\(457\) −10005.2 −1.02412 −0.512060 0.858950i \(-0.671117\pi\)
−0.512060 + 0.858950i \(0.671117\pi\)
\(458\) 0 0
\(459\) −4265.65 + 8729.92i −0.433777 + 0.887752i
\(460\) 0 0
\(461\) 15566.9i 1.57272i 0.617770 + 0.786359i \(0.288036\pi\)
−0.617770 + 0.786359i \(0.711964\pi\)
\(462\) 0 0
\(463\) 10866.3 1.09071 0.545357 0.838204i \(-0.316394\pi\)
0.545357 + 0.838204i \(0.316394\pi\)
\(464\) 0 0
\(465\) 12717.9 + 10181.8i 1.26834 + 1.01542i
\(466\) 0 0
\(467\) 2184.04i 0.216414i 0.994128 + 0.108207i \(0.0345109\pi\)
−0.994128 + 0.108207i \(0.965489\pi\)
\(468\) 0 0
\(469\) −211.622 + 3013.73i −0.0208354 + 0.296719i
\(470\) 0 0
\(471\) −8471.59 6782.27i −0.828769 0.663504i
\(472\) 0 0
\(473\) 12932.6i 1.25717i
\(474\) 0 0
\(475\) −1246.60 −0.120417
\(476\) 0 0
\(477\) −70.1332 312.753i −0.00673203 0.0300209i
\(478\) 0 0
\(479\) −7028.43 −0.670433 −0.335216 0.942141i \(-0.608809\pi\)
−0.335216 + 0.942141i \(0.608809\pi\)
\(480\) 0 0
\(481\) 7527.32i 0.713547i
\(482\) 0 0
\(483\) 5579.64 6047.22i 0.525637 0.569685i
\(484\) 0 0
\(485\) −2424.37 −0.226980
\(486\) 0 0
\(487\) −3566.36 −0.331842 −0.165921 0.986139i \(-0.553060\pi\)
−0.165921 + 0.986139i \(0.553060\pi\)
\(488\) 0 0
\(489\) −13352.8 + 16678.7i −1.23483 + 1.54241i
\(490\) 0 0
\(491\) 2231.72 0.205124 0.102562 0.994727i \(-0.467296\pi\)
0.102562 + 0.994727i \(0.467296\pi\)
\(492\) 0 0
\(493\) −7728.56 −0.706038
\(494\) 0 0
\(495\) −17274.7 + 3873.76i −1.56857 + 0.351743i
\(496\) 0 0
\(497\) 620.542 8837.19i 0.0560063 0.797590i
\(498\) 0 0
\(499\) 20669.1i 1.85426i −0.374743 0.927129i \(-0.622269\pi\)
0.374743 0.927129i \(-0.377731\pi\)
\(500\) 0 0
\(501\) −4968.79 3977.96i −0.443092 0.354735i
\(502\) 0 0
\(503\) −17146.1 −1.51990 −0.759948 0.649984i \(-0.774775\pi\)
−0.759948 + 0.649984i \(0.774775\pi\)
\(504\) 0 0
\(505\) 11358.4 1.00087
\(506\) 0 0
\(507\) −5549.06 4442.52i −0.486080 0.389151i
\(508\) 0 0
\(509\) 7036.98i 0.612787i 0.951905 + 0.306393i \(0.0991223\pi\)
−0.951905 + 0.306393i \(0.900878\pi\)
\(510\) 0 0
\(511\) 1347.07 19183.7i 0.116616 1.66074i
\(512\) 0 0
\(513\) −1526.82 + 3124.73i −0.131405 + 0.268928i
\(514\) 0 0
\(515\) 6536.91 0.559322
\(516\) 0 0
\(517\) 10767.6 0.915974
\(518\) 0 0
\(519\) −7961.20 + 9944.17i −0.673330 + 0.841042i
\(520\) 0 0
\(521\) 5554.16 0.467048 0.233524 0.972351i \(-0.424974\pi\)
0.233524 + 0.972351i \(0.424974\pi\)
\(522\) 0 0
\(523\) −1129.07 −0.0943994 −0.0471997 0.998885i \(-0.515030\pi\)
−0.0471997 + 0.998885i \(0.515030\pi\)
\(524\) 0 0
\(525\) 3556.76 + 3281.75i 0.295676 + 0.272814i
\(526\) 0 0
\(527\) 16400.6i 1.35564i
\(528\) 0 0
\(529\) 4856.64 0.399165
\(530\) 0 0
\(531\) 6231.50 1397.38i 0.509273 0.114202i
\(532\) 0 0
\(533\) −13563.8 −1.10228
\(534\) 0 0
\(535\) 7726.84i 0.624412i
\(536\) 0 0
\(537\) −3757.04 3007.85i −0.301915 0.241710i
\(538\) 0 0
\(539\) −16820.4 2373.94i −1.34417 0.189708i
\(540\) 0 0
\(541\) 13088.7i 1.04016i −0.854118 0.520079i \(-0.825903\pi\)
0.854118 0.520079i \(-0.174097\pi\)
\(542\) 0 0
\(543\) −3556.28 2847.12i −0.281058 0.225012i
\(544\) 0 0
\(545\) −24575.7 −1.93157
\(546\) 0 0
\(547\) 134.806i 0.0105373i −0.999986 0.00526863i \(-0.998323\pi\)
0.999986 0.00526863i \(-0.00167706\pi\)
\(548\) 0 0
\(549\) 4457.61 + 19878.4i 0.346532 + 1.54533i
\(550\) 0 0
\(551\) −2766.31 −0.213881
\(552\) 0 0
\(553\) −2735.81 192.107i −0.210377 0.0147726i
\(554\) 0 0
\(555\) 14040.2 + 11240.4i 1.07383 + 0.859695i
\(556\) 0 0
\(557\) 949.790 0.0722512 0.0361256 0.999347i \(-0.488498\pi\)
0.0361256 + 0.999347i \(0.488498\pi\)
\(558\) 0 0
\(559\) 7518.65i 0.568882i
\(560\) 0 0
\(561\) −13912.9 11138.5i −1.04706 0.838267i
\(562\) 0 0
\(563\) 3122.65i 0.233755i −0.993146 0.116877i \(-0.962712\pi\)
0.993146 0.116877i \(-0.0372884\pi\)
\(564\) 0 0
\(565\) −12597.4 −0.938014
\(566\) 0 0
\(567\) 12582.3 4895.94i 0.931934 0.362628i
\(568\) 0 0
\(569\) 15497.7i 1.14182i 0.821011 + 0.570912i \(0.193410\pi\)
−0.821011 + 0.570912i \(0.806590\pi\)
\(570\) 0 0
\(571\) 11912.4i 0.873063i −0.899689 0.436531i \(-0.856207\pi\)
0.899689 0.436531i \(-0.143793\pi\)
\(572\) 0 0
\(573\) 8042.56 10045.8i 0.586357 0.732406i
\(574\) 0 0
\(575\) 4299.70i 0.311843i
\(576\) 0 0
\(577\) 5650.41i 0.407677i −0.979005 0.203838i \(-0.934658\pi\)
0.979005 0.203838i \(-0.0653417\pi\)
\(578\) 0 0
\(579\) 12698.3 + 10166.2i 0.911443 + 0.729692i
\(580\) 0 0
\(581\) 959.729 13667.6i 0.0685306 0.975949i
\(582\) 0 0
\(583\) 587.917 0.0417651
\(584\) 0 0
\(585\) 10043.0 2252.10i 0.709793 0.159167i
\(586\) 0 0
\(587\) 9396.05i 0.660675i 0.943863 + 0.330338i \(0.107163\pi\)
−0.943863 + 0.330338i \(0.892837\pi\)
\(588\) 0 0
\(589\) 5870.33i 0.410667i
\(590\) 0 0
\(591\) 346.603 + 277.487i 0.0241241 + 0.0193135i
\(592\) 0 0
\(593\) −5680.51 −0.393374 −0.196687 0.980466i \(-0.563018\pi\)
−0.196687 + 0.980466i \(0.563018\pi\)
\(594\) 0 0
\(595\) −1189.52 + 16940.0i −0.0819587 + 1.16718i
\(596\) 0 0
\(597\) 11485.5 14346.2i 0.787385 0.983506i
\(598\) 0 0
\(599\) 11213.1i 0.764866i −0.923983 0.382433i \(-0.875086\pi\)
0.923983 0.382433i \(-0.124914\pi\)
\(600\) 0 0
\(601\) 4599.55i 0.312179i −0.987743 0.156089i \(-0.950111\pi\)
0.987743 0.156089i \(-0.0498888\pi\)
\(602\) 0 0
\(603\) 4297.69 963.734i 0.290241 0.0650850i
\(604\) 0 0
\(605\) 14851.3i 0.998000i
\(606\) 0 0
\(607\) 27115.8i 1.81318i 0.422017 + 0.906588i \(0.361322\pi\)
−0.422017 + 0.906588i \(0.638678\pi\)
\(608\) 0 0
\(609\) 7892.73 + 7282.46i 0.525172 + 0.484565i
\(610\) 0 0
\(611\) −6259.98 −0.414487
\(612\) 0 0
\(613\) 2010.26i 0.132453i −0.997805 0.0662263i \(-0.978904\pi\)
0.997805 0.0662263i \(-0.0210959\pi\)
\(614\) 0 0
\(615\) −20254.7 + 25299.7i −1.32804 + 1.65883i
\(616\) 0 0
\(617\) 15659.8i 1.02178i −0.859646 0.510891i \(-0.829316\pi\)
0.859646 0.510891i \(-0.170684\pi\)
\(618\) 0 0
\(619\) −27135.8 −1.76200 −0.881001 0.473115i \(-0.843130\pi\)
−0.881001 + 0.473115i \(0.843130\pi\)
\(620\) 0 0
\(621\) −10777.6 5266.20i −0.696442 0.340298i
\(622\) 0 0
\(623\) 24900.7 + 1748.52i 1.60133 + 0.112444i
\(624\) 0 0
\(625\) −19382.1 −1.24046
\(626\) 0 0
\(627\) −4979.88 3986.84i −0.317189 0.253938i
\(628\) 0 0
\(629\) 18105.9i 1.14774i
\(630\) 0 0
\(631\) −854.200 −0.0538909 −0.0269455 0.999637i \(-0.508578\pi\)
−0.0269455 + 0.999637i \(0.508578\pi\)
\(632\) 0 0
\(633\) 5508.20 6880.18i 0.345863 0.432011i
\(634\) 0 0
\(635\) 33769.3i 2.11038i
\(636\) 0 0
\(637\) 9778.89 + 1380.14i 0.608248 + 0.0858449i
\(638\) 0 0
\(639\) −12602.2 + 2825.97i −0.780178 + 0.174951i
\(640\) 0 0
\(641\) 29337.9i 1.80777i 0.427779 + 0.903884i \(0.359296\pi\)
−0.427779 + 0.903884i \(0.640704\pi\)
\(642\) 0 0
\(643\) 24076.1 1.47662 0.738310 0.674461i \(-0.235624\pi\)
0.738310 + 0.674461i \(0.235624\pi\)
\(644\) 0 0
\(645\) 14024.0 + 11227.5i 0.856117 + 0.685399i
\(646\) 0 0
\(647\) 9606.99 0.583755 0.291878 0.956456i \(-0.405720\pi\)
0.291878 + 0.956456i \(0.405720\pi\)
\(648\) 0 0
\(649\) 11714.1i 0.708500i
\(650\) 0 0
\(651\) 15454.0 16749.0i 0.930398 1.00837i
\(652\) 0 0
\(653\) 5450.16 0.326618 0.163309 0.986575i \(-0.447783\pi\)
0.163309 + 0.986575i \(0.447783\pi\)
\(654\) 0 0
\(655\) −5821.08 −0.347249
\(656\) 0 0
\(657\) −27356.6 + 6134.58i −1.62448 + 0.364281i
\(658\) 0 0
\(659\) 15534.8 0.918287 0.459144 0.888362i \(-0.348156\pi\)
0.459144 + 0.888362i \(0.348156\pi\)
\(660\) 0 0
\(661\) −10381.1 −0.610858 −0.305429 0.952215i \(-0.598800\pi\)
−0.305429 + 0.952215i \(0.598800\pi\)
\(662\) 0 0
\(663\) 8088.55 + 6475.61i 0.473806 + 0.379324i
\(664\) 0 0
\(665\) −425.768 + 6063.39i −0.0248279 + 0.353576i
\(666\) 0 0
\(667\) 9541.36i 0.553888i
\(668\) 0 0
\(669\) 12783.7 15967.9i 0.738784 0.922799i
\(670\) 0 0
\(671\) −37367.6 −2.14986
\(672\) 0 0
\(673\) 29748.6 1.70390 0.851948 0.523626i \(-0.175421\pi\)
0.851948 + 0.523626i \(0.175421\pi\)
\(674\) 0 0
\(675\) 3097.39 6339.02i 0.176620 0.361465i
\(676\) 0 0
\(677\) 6845.80i 0.388634i −0.980939 0.194317i \(-0.937751\pi\)
0.980939 0.194317i \(-0.0622491\pi\)
\(678\) 0 0
\(679\) −237.552 + 3383.00i −0.0134262 + 0.191204i
\(680\) 0 0
\(681\) 20231.3 25270.4i 1.13842 1.42198i
\(682\) 0 0
\(683\) −13901.9 −0.778833 −0.389417 0.921062i \(-0.627323\pi\)
−0.389417 + 0.921062i \(0.627323\pi\)
\(684\) 0 0
\(685\) 14919.5 0.832184
\(686\) 0 0
\(687\) 16119.2 + 12904.9i 0.895178 + 0.716671i
\(688\) 0 0
\(689\) −341.799 −0.0188991
\(690\) 0 0
\(691\) 7713.20 0.424637 0.212318 0.977201i \(-0.431899\pi\)
0.212318 + 0.977201i \(0.431899\pi\)
\(692\) 0 0
\(693\) 3712.83 + 24484.9i 0.203519 + 1.34214i
\(694\) 0 0
\(695\) 32034.1i 1.74838i
\(696\) 0 0
\(697\) −32625.7 −1.77301
\(698\) 0 0
\(699\) −11044.9 + 13795.9i −0.597648 + 0.746509i
\(700\) 0 0
\(701\) −28716.9 −1.54725 −0.773626 0.633643i \(-0.781559\pi\)
−0.773626 + 0.633643i \(0.781559\pi\)
\(702\) 0 0
\(703\) 6480.69i 0.347687i
\(704\) 0 0
\(705\) −9347.95 + 11676.3i −0.499382 + 0.623767i
\(706\) 0 0
\(707\) 1112.95 15849.6i 0.0592033 0.843118i
\(708\) 0 0
\(709\) 6971.08i 0.369259i −0.982808 0.184629i \(-0.940892\pi\)
0.982808 0.184629i \(-0.0591085\pi\)
\(710\) 0 0
\(711\) 874.862 + 3901.38i 0.0461461 + 0.205785i
\(712\) 0 0
\(713\) −20247.6 −1.06350
\(714\) 0 0
\(715\) 18879.0i 0.987463i
\(716\) 0 0
\(717\) 14540.8 18162.6i 0.757371 0.946016i
\(718\) 0 0
\(719\) −19292.8 −1.00070 −0.500348 0.865825i \(-0.666795\pi\)
−0.500348 + 0.865825i \(0.666795\pi\)
\(720\) 0 0
\(721\) 640.519 9121.68i 0.0330849 0.471164i
\(722\) 0 0
\(723\) 7510.44 9381.13i 0.386329 0.482556i
\(724\) 0 0
\(725\) 5611.90 0.287477
\(726\) 0 0
\(727\) 12461.6i 0.635732i 0.948136 + 0.317866i \(0.102966\pi\)
−0.948136 + 0.317866i \(0.897034\pi\)
\(728\) 0 0
\(729\) −12095.7 15527.8i −0.614527 0.788896i
\(730\) 0 0
\(731\) 18085.0i 0.915045i
\(732\) 0 0
\(733\) 26437.4 1.33218 0.666090 0.745872i \(-0.267967\pi\)
0.666090 + 0.745872i \(0.267967\pi\)
\(734\) 0 0
\(735\) 17177.0 16179.0i 0.862017 0.811933i
\(736\) 0 0
\(737\) 8078.86i 0.403784i
\(738\) 0 0
\(739\) 24642.5i 1.22664i −0.789834 0.613321i \(-0.789833\pi\)
0.789834 0.613321i \(-0.210167\pi\)
\(740\) 0 0
\(741\) 2895.16 + 2317.84i 0.143531 + 0.114909i
\(742\) 0 0
\(743\) 29736.2i 1.46826i 0.679012 + 0.734128i \(0.262409\pi\)
−0.679012 + 0.734128i \(0.737591\pi\)
\(744\) 0 0
\(745\) 27135.2i 1.33444i
\(746\) 0 0
\(747\) −19490.5 + 4370.63i −0.954645 + 0.214074i
\(748\) 0 0
\(749\) −10782.1 757.115i −0.525995 0.0369351i
\(750\) 0 0
\(751\) −8068.95 −0.392064 −0.196032 0.980597i \(-0.562806\pi\)
−0.196032 + 0.980597i \(0.562806\pi\)
\(752\) 0 0
\(753\) −14591.6 + 18226.0i −0.706171 + 0.882063i
\(754\) 0 0
\(755\) 3815.42i 0.183917i
\(756\) 0 0
\(757\) 10634.4i 0.510587i −0.966864 0.255293i \(-0.917828\pi\)
0.966864 0.255293i \(-0.0821720\pi\)
\(758\) 0 0
\(759\) 13751.1 17176.3i 0.657622 0.821422i
\(760\) 0 0
\(761\) 3296.31 0.157019 0.0785094 0.996913i \(-0.474984\pi\)
0.0785094 + 0.996913i \(0.474984\pi\)
\(762\) 0 0
\(763\) −2408.05 + 34293.2i −0.114256 + 1.62712i
\(764\) 0 0
\(765\) 24157.1 5417.09i 1.14170 0.256020i
\(766\) 0 0
\(767\) 6810.22i 0.320603i
\(768\) 0 0
\(769\) 29295.6i 1.37376i 0.726769 + 0.686882i \(0.241021\pi\)
−0.726769 + 0.686882i \(0.758979\pi\)
\(770\) 0 0
\(771\) −5808.53 4650.25i −0.271322 0.217218i
\(772\) 0 0
\(773\) 3337.03i 0.155271i −0.996982 0.0776356i \(-0.975263\pi\)
0.996982 0.0776356i \(-0.0247371\pi\)
\(774\) 0 0
\(775\) 11908.9i 0.551975i
\(776\) 0 0
\(777\) 17060.8 18490.5i 0.787712 0.853722i
\(778\) 0 0
\(779\) −11677.8 −0.537102
\(780\) 0 0
\(781\) 23689.7i 1.08538i
\(782\) 0 0
\(783\) 6873.36 14066.8i 0.313709 0.642025i
\(784\) 0 0
\(785\) 27650.7i 1.25719i
\(786\) 0 0
\(787\) −643.131 −0.0291298 −0.0145649 0.999894i \(-0.504636\pi\)
−0.0145649 + 0.999894i \(0.504636\pi\)
\(788\) 0 0
\(789\) −2931.25 + 3661.37i −0.132263 + 0.165207i
\(790\) 0 0
\(791\) −1234.36 + 17578.6i −0.0554851 + 0.790168i
\(792\) 0 0
\(793\) 21724.5 0.972835
\(794\) 0 0
\(795\) −510.403 + 637.534i −0.0227700 + 0.0284415i
\(796\) 0 0
\(797\) 12470.7i 0.554248i 0.960834 + 0.277124i \(0.0893813\pi\)
−0.960834 + 0.277124i \(0.910619\pi\)
\(798\) 0 0
\(799\) −15057.5 −0.666702
\(800\) 0 0
\(801\) −7962.79 35509.4i −0.351250 1.56637i
\(802\) 0 0
\(803\) 51425.4i 2.25998i
\(804\) 0 0
\(805\) −20913.4 1468.53i −0.915654 0.0642967i
\(806\) 0 0
\(807\) −6136.81 + 7665.36i −0.267690 + 0.334366i
\(808\) 0 0
\(809\) 36823.8i 1.60032i −0.599789 0.800158i \(-0.704749\pi\)
0.599789 0.800158i \(-0.295251\pi\)
\(810\) 0 0
\(811\) −28331.7 −1.22671 −0.613354 0.789808i \(-0.710180\pi\)
−0.613354 + 0.789808i \(0.710180\pi\)
\(812\) 0 0
\(813\) −24748.6 + 30913.0i −1.06762 + 1.33354i
\(814\) 0 0
\(815\) 54438.2 2.33974
\(816\) 0 0
\(817\) 6473.23i 0.277196i
\(818\) 0 0
\(819\) −2158.53 14234.8i −0.0920944 0.607333i
\(820\) 0 0
\(821\) −24314.1 −1.03358 −0.516789 0.856113i \(-0.672873\pi\)
−0.516789 + 0.856113i \(0.672873\pi\)
\(822\) 0 0
\(823\) 7780.71 0.329549 0.164774 0.986331i \(-0.447310\pi\)
0.164774 + 0.986331i \(0.447310\pi\)
\(824\) 0 0
\(825\) 10102.5 + 8087.95i 0.426331 + 0.341317i
\(826\) 0 0
\(827\) −9658.38 −0.406112 −0.203056 0.979167i \(-0.565087\pi\)
−0.203056 + 0.979167i \(0.565087\pi\)
\(828\) 0 0
\(829\) −4178.46 −0.175059 −0.0875296 0.996162i \(-0.527897\pi\)
−0.0875296 + 0.996162i \(0.527897\pi\)
\(830\) 0 0
\(831\) 9689.81 12103.3i 0.404496 0.505247i
\(832\) 0 0
\(833\) 23521.7 + 3319.73i 0.978365 + 0.138081i
\(834\) 0 0
\(835\) 16217.8i 0.672144i
\(836\) 0 0
\(837\) −29850.8 14585.8i −1.23273 0.602342i
\(838\) 0 0
\(839\) 937.651 0.0385832 0.0192916 0.999814i \(-0.493859\pi\)
0.0192916 + 0.999814i \(0.493859\pi\)
\(840\) 0 0
\(841\) −11935.8 −0.489391
\(842\) 0 0
\(843\) −9706.04 + 12123.6i −0.396552 + 0.495325i
\(844\) 0 0
\(845\) 18111.8i 0.737354i
\(846\) 0 0
\(847\) −20723.6 1455.20i −0.840700 0.0590335i
\(848\) 0 0
\(849\) −12781.5 10232.7i −0.516678 0.413647i
\(850\) 0 0
\(851\) −22352.8 −0.900403
\(852\) 0 0
\(853\) 5791.89 0.232486 0.116243 0.993221i \(-0.462915\pi\)
0.116243 + 0.993221i \(0.462915\pi\)
\(854\) 0 0
\(855\) 8646.62 1938.96i 0.345857 0.0775566i
\(856\) 0 0
\(857\) 1880.84 0.0749687 0.0374843 0.999297i \(-0.488066\pi\)
0.0374843 + 0.999297i \(0.488066\pi\)
\(858\) 0 0
\(859\) 9503.79 0.377491 0.188746 0.982026i \(-0.439558\pi\)
0.188746 + 0.982026i \(0.439558\pi\)
\(860\) 0 0
\(861\) 33318.8 + 30742.6i 1.31882 + 1.21685i
\(862\) 0 0
\(863\) 5322.63i 0.209947i 0.994475 + 0.104974i \(0.0334758\pi\)
−0.994475 + 0.104974i \(0.966524\pi\)
\(864\) 0 0
\(865\) 32457.2 1.27581
\(866\) 0 0
\(867\) −473.011 378.688i −0.0185286 0.0148338i
\(868\) 0 0
\(869\) −7333.85 −0.286288
\(870\) 0 0
\(871\) 4696.82i 0.182716i
\(872\) 0 0
\(873\) 4824.29 1081.82i 0.187030 0.0419405i
\(874\) 0 0
\(875\) −1283.22 + 18274.4i −0.0495779 + 0.706043i
\(876\) 0 0
\(877\) 15099.1i 0.581369i 0.956819 + 0.290684i \(0.0938829\pi\)
−0.956819 + 0.290684i \(0.906117\pi\)
\(878\) 0 0
\(879\) 5312.79 6636.09i 0.203863 0.254641i
\(880\) 0 0
\(881\) 25460.6 0.973654 0.486827 0.873498i \(-0.338154\pi\)
0.486827 + 0.873498i \(0.338154\pi\)
\(882\) 0 0
\(883\) 29492.7i 1.12402i 0.827131 + 0.562009i \(0.189972\pi\)
−0.827131 + 0.562009i \(0.810028\pi\)
\(884\) 0 0
\(885\) −12702.6 10169.6i −0.482480 0.386269i
\(886\) 0 0
\(887\) 11558.8 0.437550 0.218775 0.975775i \(-0.429794\pi\)
0.218775 + 0.975775i \(0.429794\pi\)
\(888\) 0 0
\(889\) 47122.0 + 3308.88i 1.77775 + 0.124833i
\(890\) 0 0
\(891\) 32646.6 15416.9i 1.22750 0.579669i
\(892\) 0 0
\(893\) −5389.57 −0.201965
\(894\) 0 0
\(895\) 12262.8i 0.457987i
\(896\) 0 0
\(897\) −7994.53 + 9985.80i −0.297580 + 0.371701i
\(898\) 0 0
\(899\) 26426.8i 0.980403i
\(900\) 0 0
\(901\) −822.146 −0.0303992
\(902\) 0 0
\(903\) 17041.1 18469.2i 0.628010 0.680637i
\(904\) 0 0
\(905\) 11607.5i 0.426348i
\(906\) 0 0
\(907\) 10190.2i 0.373053i −0.982450 0.186527i \(-0.940277\pi\)
0.982450 0.186527i \(-0.0597231\pi\)
\(908\) 0 0
\(909\) −22602.1 + 5068.40i −0.824713 + 0.184937i
\(910\) 0 0
\(911\) 33432.8i 1.21589i −0.793978 0.607947i \(-0.791993\pi\)
0.793978 0.607947i \(-0.208007\pi\)
\(912\) 0 0
\(913\) 36638.5i 1.32810i
\(914\) 0 0
\(915\) 32440.8 40521.2i 1.17209 1.46403i
\(916\) 0 0
\(917\) −570.378 + 8122.80i −0.0205404 + 0.292517i
\(918\) 0 0
\(919\) 38879.2 1.39554 0.697772 0.716320i \(-0.254175\pi\)
0.697772 + 0.716320i \(0.254175\pi\)
\(920\) 0 0
\(921\) −15367.5 12303.1i −0.549812 0.440174i
\(922\) 0 0
\(923\) 13772.5i 0.491146i
\(924\) 0 0
\(925\) 13147.1i 0.467324i
\(926\) 0 0
\(927\) −13007.9 + 2916.94i −0.460878 + 0.103349i
\(928\) 0 0
\(929\) 19916.3 0.703370 0.351685 0.936118i \(-0.385609\pi\)
0.351685 + 0.936118i \(0.385609\pi\)
\(930\) 0 0
\(931\) 8419.20 + 1188.24i 0.296378 + 0.0418293i
\(932\) 0 0
\(933\) 20275.1 + 16232.1i 0.711444 + 0.569575i
\(934\) 0 0
\(935\) 45410.7i 1.58833i
\(936\) 0 0
\(937\) 27614.4i 0.962779i 0.876507 + 0.481390i \(0.159868\pi\)
−0.876507 + 0.481390i \(0.840132\pi\)
\(938\) 0 0
\(939\) 3743.19 4675.54i 0.130090 0.162492i
\(940\) 0 0
\(941\) 33189.4i 1.14978i −0.818231 0.574890i \(-0.805045\pi\)
0.818231 0.574890i \(-0.194955\pi\)
\(942\) 0 0
\(943\) 40278.4i 1.39093i
\(944\) 0 0
\(945\) −29774.6 17230.5i −1.02494 0.593132i
\(946\) 0 0
\(947\) 6141.76 0.210750 0.105375 0.994433i \(-0.466396\pi\)
0.105375 + 0.994433i \(0.466396\pi\)
\(948\) 0 0
\(949\) 29897.2i 1.02266i
\(950\) 0 0
\(951\) −11109.5 8894.16i −0.378812 0.303273i
\(952\) 0 0
\(953\) 7097.85i 0.241261i −0.992697 0.120631i \(-0.961508\pi\)
0.992697 0.120631i \(-0.0384916\pi\)
\(954\) 0 0
\(955\) −32788.8 −1.11102
\(956\) 0 0
\(957\) 22418.2 + 17947.8i 0.757239 + 0.606238i
\(958\) 0 0
\(959\) 1461.89 20818.9i 0.0492252 0.701019i
\(960\) 0 0
\(961\) −26288.8 −0.882441
\(962\) 0 0
\(963\) 3447.92 + 15375.7i 0.115377 + 0.514513i
\(964\) 0 0
\(965\) 41446.6i 1.38260i
\(966\) 0 0
\(967\) −10526.5 −0.350063 −0.175031 0.984563i \(-0.556003\pi\)
−0.175031 + 0.984563i \(0.556003\pi\)
\(968\) 0 0
\(969\) 6963.89 + 5575.22i 0.230869 + 0.184832i
\(970\) 0 0
\(971\) 10918.3i 0.360848i −0.983589 0.180424i \(-0.942253\pi\)
0.983589 0.180424i \(-0.0577470\pi\)
\(972\) 0 0
\(973\) −44700.7 3138.86i −1.47280 0.103419i
\(974\) 0 0
\(975\) −5873.30 4702.10i −0.192919 0.154449i
\(976\) 0 0
\(977\) 23312.8i 0.763400i 0.924286 + 0.381700i \(0.124661\pi\)
−0.924286 + 0.381700i \(0.875339\pi\)
\(978\) 0 0
\(979\) 66751.0 2.17913
\(980\) 0 0
\(981\) 48903.4 10966.3i 1.59160 0.356909i
\(982\) 0 0
\(983\) 17319.7 0.561965 0.280982 0.959713i \(-0.409340\pi\)
0.280982 + 0.959713i \(0.409340\pi\)
\(984\) 0 0
\(985\) 1131.29i 0.0365948i
\(986\) 0 0
\(987\) 15377.3 + 14188.3i 0.495912 + 0.457568i
\(988\) 0 0
\(989\) −22327.0 −0.717854
\(990\) 0 0
\(991\) −20423.3 −0.654660 −0.327330 0.944910i \(-0.606149\pi\)
−0.327330 + 0.944910i \(0.606149\pi\)
\(992\) 0 0
\(993\) 16958.9 21183.0i 0.541969 0.676962i
\(994\) 0 0
\(995\) −46825.2 −1.49192
\(996\) 0 0
\(997\) 47651.1 1.51367 0.756833 0.653608i \(-0.226745\pi\)
0.756833 + 0.653608i \(0.226745\pi\)
\(998\) 0 0
\(999\) −32954.5 16102.4i −1.04368 0.509966i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.4.i.c.209.64 80
3.2 odd 2 inner 672.4.i.c.209.61 80
4.3 odd 2 168.4.i.c.125.9 80
7.6 odd 2 inner 672.4.i.c.209.18 80
8.3 odd 2 168.4.i.c.125.70 yes 80
8.5 even 2 inner 672.4.i.c.209.17 80
12.11 even 2 168.4.i.c.125.71 yes 80
21.20 even 2 inner 672.4.i.c.209.19 80
24.5 odd 2 inner 672.4.i.c.209.20 80
24.11 even 2 168.4.i.c.125.12 yes 80
28.27 even 2 168.4.i.c.125.10 yes 80
56.13 odd 2 inner 672.4.i.c.209.63 80
56.27 even 2 168.4.i.c.125.69 yes 80
84.83 odd 2 168.4.i.c.125.72 yes 80
168.83 odd 2 168.4.i.c.125.11 yes 80
168.125 even 2 inner 672.4.i.c.209.62 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.i.c.125.9 80 4.3 odd 2
168.4.i.c.125.10 yes 80 28.27 even 2
168.4.i.c.125.11 yes 80 168.83 odd 2
168.4.i.c.125.12 yes 80 24.11 even 2
168.4.i.c.125.69 yes 80 56.27 even 2
168.4.i.c.125.70 yes 80 8.3 odd 2
168.4.i.c.125.71 yes 80 12.11 even 2
168.4.i.c.125.72 yes 80 84.83 odd 2
672.4.i.c.209.17 80 8.5 even 2 inner
672.4.i.c.209.18 80 7.6 odd 2 inner
672.4.i.c.209.19 80 21.20 even 2 inner
672.4.i.c.209.20 80 24.5 odd 2 inner
672.4.i.c.209.61 80 3.2 odd 2 inner
672.4.i.c.209.62 80 168.125 even 2 inner
672.4.i.c.209.63 80 56.13 odd 2 inner
672.4.i.c.209.64 80 1.1 even 1 trivial