L(s) = 1 | + (−0.866 + 0.5i)2-s + (1.73 − i)3-s + (0.499 − 0.866i)4-s + (−0.999 + 1.73i)6-s + (0.866 + 0.5i)7-s + 0.999i·8-s + (0.499 − 0.866i)9-s + (−1.5 − 2.59i)11-s − 1.99i·12-s + (2.59 − 2.5i)13-s − 0.999·14-s + (−0.5 − 0.866i)16-s + (5.19 + 3i)17-s + 0.999i·18-s + (2.5 − 4.33i)19-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.999 − 0.577i)3-s + (0.249 − 0.433i)4-s + (−0.408 + 0.707i)6-s + (0.327 + 0.188i)7-s + 0.353i·8-s + (0.166 − 0.288i)9-s + (−0.452 − 0.783i)11-s − 0.577i·12-s + (0.720 − 0.693i)13-s − 0.267·14-s + (−0.125 − 0.216i)16-s + (1.26 + 0.727i)17-s + 0.235i·18-s + (0.573 − 0.993i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.888 + 0.458i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.888 + 0.458i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.58737 - 0.385489i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.58737 - 0.385489i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-2.59 + 2.5i)T \) |
good | 3 | \( 1 + (-1.73 + i)T + (1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + (-0.866 - 0.5i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.5 + 2.59i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-5.19 - 3i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.5 + 4.33i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 4T + 31T^{2} \) |
| 37 | \( 1 + (-9.52 + 5.5i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (3 + 5.19i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.73 - i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 3iT - 47T^{2} \) |
| 53 | \( 1 - 9iT - 53T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4 - 6.92i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (13.8 - 8i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3 - 5.19i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 14iT - 73T^{2} \) |
| 79 | \( 1 - 16T + 79T^{2} \) |
| 83 | \( 1 - 6iT - 83T^{2} \) |
| 89 | \( 1 + (-4.5 - 7.79i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-8.66 - 5i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.47671968980934390338728128105, −9.258067027856122314113928544519, −8.630052536884357810449586131923, −7.87016404945340496765988811010, −7.42950705454366284363466247234, −6.04940085515767421571001140015, −5.30589927153338176698361575158, −3.52200574949195190980286740944, −2.53851024791436514512038992309, −1.13560295675660000694273358100,
1.52670808408396028955458847836, 2.89106132255136290956354774403, 3.75607713291279916733725790841, 4.84032604368685439769706597810, 6.25656287766773930977753511707, 7.64168131335912765919190512963, 7.990361585480651687916223845462, 9.104005917387731026724803026216, 9.680558271270315461127628451295, 10.28220314519950221602158461473