| L(s)  = 1 | + (−0.246 + 0.427i)2-s   + (0.908 − 0.243i)3-s   + (0.878 + 1.52i)4-s   + (−2.21 − 0.284i)5-s   + (−0.120 + 0.448i)6-s   + (3.18 − 1.83i)7-s   − 1.85·8-s   + (−1.83 + 1.05i)9-s   + (0.669 − 0.878i)10-s   + (−0.177 − 0.664i)11-s   + (1.16 + 1.16i)12-s   + (−2.11 − 2.92i)13-s   + 1.81i·14-s   + (−2.08 + 0.281i)15-s   + (−1.29 + 2.24i)16-s   + (0.614 − 2.29i)17-s  + ⋯ | 
| L(s)  = 1 | + (−0.174 + 0.302i)2-s   + (0.524 − 0.140i)3-s   + (0.439 + 0.760i)4-s   + (−0.991 − 0.127i)5-s   + (−0.0490 + 0.183i)6-s   + (1.20 − 0.694i)7-s   − 0.655·8-s   + (−0.610 + 0.352i)9-s   + (0.211 − 0.277i)10-s   + (−0.0536 − 0.200i)11-s   + (0.337 + 0.337i)12-s   + (−0.585 − 0.810i)13-s   + 0.485i·14-s   + (−0.538 + 0.0726i)15-s   + (−0.324 + 0.562i)16-s   + (0.149 − 0.556i)17-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.880 - 0.473i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 65 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.880 - 0.473i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(0.897123 + 0.226011i\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(0.897123 + 0.226011i\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 5 | \( 1 + (2.21 + 0.284i)T \) | 
|  | 13 | \( 1 + (2.11 + 2.92i)T \) | 
| good | 2 | \( 1 + (0.246 - 0.427i)T + (-1 - 1.73i)T^{2} \) | 
|  | 3 | \( 1 + (-0.908 + 0.243i)T + (2.59 - 1.5i)T^{2} \) | 
|  | 7 | \( 1 + (-3.18 + 1.83i)T + (3.5 - 6.06i)T^{2} \) | 
|  | 11 | \( 1 + (0.177 + 0.664i)T + (-9.52 + 5.5i)T^{2} \) | 
|  | 17 | \( 1 + (-0.614 + 2.29i)T + (-14.7 - 8.5i)T^{2} \) | 
|  | 19 | \( 1 + (5.29 + 1.41i)T + (16.4 + 9.5i)T^{2} \) | 
|  | 23 | \( 1 + (-0.350 - 1.30i)T + (-19.9 + 11.5i)T^{2} \) | 
|  | 29 | \( 1 + (-8.24 - 4.75i)T + (14.5 + 25.1i)T^{2} \) | 
|  | 31 | \( 1 + (-4.81 - 4.81i)T + 31iT^{2} \) | 
|  | 37 | \( 1 + (-1.58 - 0.917i)T + (18.5 + 32.0i)T^{2} \) | 
|  | 41 | \( 1 + (0.534 - 0.143i)T + (35.5 - 20.5i)T^{2} \) | 
|  | 43 | \( 1 + (2.09 + 0.560i)T + (37.2 + 21.5i)T^{2} \) | 
|  | 47 | \( 1 - 3.80iT - 47T^{2} \) | 
|  | 53 | \( 1 + (2.47 + 2.47i)T + 53iT^{2} \) | 
|  | 59 | \( 1 + (-2.69 + 10.0i)T + (-51.0 - 29.5i)T^{2} \) | 
|  | 61 | \( 1 + (3.09 + 5.36i)T + (-30.5 + 52.8i)T^{2} \) | 
|  | 67 | \( 1 + (6.12 - 10.6i)T + (-33.5 - 58.0i)T^{2} \) | 
|  | 71 | \( 1 + (1.73 - 6.47i)T + (-61.4 - 35.5i)T^{2} \) | 
|  | 73 | \( 1 - 3.37T + 73T^{2} \) | 
|  | 79 | \( 1 + 3.12iT - 79T^{2} \) | 
|  | 83 | \( 1 - 2.13iT - 83T^{2} \) | 
|  | 89 | \( 1 + (3.26 - 0.874i)T + (77.0 - 44.5i)T^{2} \) | 
|  | 97 | \( 1 + (3.53 + 6.12i)T + (-48.5 + 84.0i)T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−15.01150761132530540774618215617, −14.10833813186078749140818033032, −12.70838199458803559724053871314, −11.61273111058021635364077530301, −10.74991829429104471606032401590, −8.488967541040984759467140388047, −8.076908737128926219749758483154, −7.05840126408489486051835138837, −4.74270536652492058106426502831, −3.00707812523460288609840140663, 
2.40166957102956391690475466466, 4.52275232332605578732314684377, 6.28130803462563181164598894132, 8.012570892265524227362598958956, 8.915439261738999416456203151506, 10.39600903827274445130703714180, 11.59882044104803595031452808671, 12.05925584548486967272737009793, 14.20314383691893749855679665616, 14.96123380725928700734064091628
