Newspace parameters
Level: | |||
Weight: | |||
Character orbit: | 65.o (of order , degree , minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 |
|
−1.32488 | − | 2.29475i | −1.25278 | − | 0.335680i | −2.51060 | + | 4.34849i | −1.30391 | − | 1.81654i | 0.889471 | + | 3.31955i | 0.0972962 | + | 0.0561740i | 8.00544 | −1.14131 | − | 0.658935i | −2.44100 | + | 5.39885i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2.2 | −0.915816 | − | 1.58624i | 1.91432 | + | 0.512942i | −0.677439 | + | 1.17336i | 1.45480 | + | 1.69810i | −0.939520 | − | 3.50634i | −3.06478 | − | 1.76945i | −1.18163 | 0.803451 | + | 0.463873i | 1.36126 | − | 3.86282i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2.3 | −0.246951 | − | 0.427732i | 0.908353 | + | 0.243392i | 0.878030 | − | 1.52079i | −2.21791 | + | 0.284413i | −0.120212 | − | 0.448637i | 3.18307 | + | 1.83775i | −1.85513 | −1.83221 | − | 1.05783i | 0.669366 | + | 0.878433i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2.4 | −0.137404 | − | 0.237991i | −2.28256 | − | 0.611610i | 0.962240 | − | 1.66665i | 1.69883 | − | 1.45395i | 0.168076 | + | 0.627267i | −0.334376 | − | 0.193052i | −1.07848 | 2.23793 | + | 1.29207i | −0.579454 | − | 0.204528i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2.5 | 0.759023 | + | 1.31467i | −0.653367 | − | 0.175069i | −0.152233 | + | 0.263675i | 0.600231 | + | 2.15400i | −0.265763 | − | 0.991842i | −2.24723 | − | 1.29744i | 2.57390 | −2.20184 | − | 1.27123i | −2.37621 | + | 2.42404i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
32.1 | −1.04397 | + | 1.80821i | 0.713171 | + | 2.66159i | −1.17974 | − | 2.04338i | −0.194361 | − | 2.22760i | −5.55724 | − | 1.48906i | 2.52122 | − | 1.45563i | 0.750585 | −3.97738 | + | 2.29634i | 4.23088 | + | 1.97411i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
32.2 | −0.792369 | + | 1.37242i | −0.0510678 | − | 0.190588i | −0.255697 | − | 0.442881i | 0.0672627 | + | 2.23506i | 0.302032 | + | 0.0809291i | −0.474866 | + | 0.274164i | −2.35905 | 2.56436 | − | 1.48053i | −3.12074 | − | 1.67868i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
32.3 | 0.0656513 | − | 0.113711i | −0.0890070 | − | 0.332179i | 0.991380 | + | 1.71712i | 0.813169 | − | 2.08297i | −0.0436159 | − | 0.0116869i | −2.40874 | + | 1.39069i | 0.522947 | 2.49566 | − | 1.44087i | −0.183472 | − | 0.229216i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
32.4 | 0.511309 | − | 0.885613i | −0.721300 | − | 2.69193i | 0.477126 | + | 0.826407i | −1.69584 | + | 1.45744i | −2.75281 | − | 0.737614i | 0.834479 | − | 0.481787i | 3.02107 | −4.12812 | + | 2.38337i | 0.423625 | + | 2.24706i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
32.5 | 1.12540 | − | 1.94926i | 0.514229 | + | 1.91913i | −1.53307 | − | 2.65535i | −2.22228 | − | 0.247944i | 4.31958 | + | 1.15743i | −1.10607 | + | 0.638592i | −2.39966 | −0.820542 | + | 0.473740i | −2.98427 | + | 4.05275i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
33.1 | −1.32488 | + | 2.29475i | −1.25278 | + | 0.335680i | −2.51060 | − | 4.34849i | −1.30391 | + | 1.81654i | 0.889471 | − | 3.31955i | 0.0972962 | − | 0.0561740i | 8.00544 | −1.14131 | + | 0.658935i | −2.44100 | − | 5.39885i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
33.2 | −0.915816 | + | 1.58624i | 1.91432 | − | 0.512942i | −0.677439 | − | 1.17336i | 1.45480 | − | 1.69810i | −0.939520 | + | 3.50634i | −3.06478 | + | 1.76945i | −1.18163 | 0.803451 | − | 0.463873i | 1.36126 | + | 3.86282i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
33.3 | −0.246951 | + | 0.427732i | 0.908353 | − | 0.243392i | 0.878030 | + | 1.52079i | −2.21791 | − | 0.284413i | −0.120212 | + | 0.448637i | 3.18307 | − | 1.83775i | −1.85513 | −1.83221 | + | 1.05783i | 0.669366 | − | 0.878433i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
33.4 | −0.137404 | + | 0.237991i | −2.28256 | + | 0.611610i | 0.962240 | + | 1.66665i | 1.69883 | + | 1.45395i | 0.168076 | − | 0.627267i | −0.334376 | + | 0.193052i | −1.07848 | 2.23793 | − | 1.29207i | −0.579454 | + | 0.204528i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
33.5 | 0.759023 | − | 1.31467i | −0.653367 | + | 0.175069i | −0.152233 | − | 0.263675i | 0.600231 | − | 2.15400i | −0.265763 | + | 0.991842i | −2.24723 | + | 1.29744i | 2.57390 | −2.20184 | + | 1.27123i | −2.37621 | − | 2.42404i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
63.1 | −1.04397 | − | 1.80821i | 0.713171 | − | 2.66159i | −1.17974 | + | 2.04338i | −0.194361 | + | 2.22760i | −5.55724 | + | 1.48906i | 2.52122 | + | 1.45563i | 0.750585 | −3.97738 | − | 2.29634i | 4.23088 | − | 1.97411i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
63.2 | −0.792369 | − | 1.37242i | −0.0510678 | + | 0.190588i | −0.255697 | + | 0.442881i | 0.0672627 | − | 2.23506i | 0.302032 | − | 0.0809291i | −0.474866 | − | 0.274164i | −2.35905 | 2.56436 | + | 1.48053i | −3.12074 | + | 1.67868i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
63.3 | 0.0656513 | + | 0.113711i | −0.0890070 | + | 0.332179i | 0.991380 | − | 1.71712i | 0.813169 | + | 2.08297i | −0.0436159 | + | 0.0116869i | −2.40874 | − | 1.39069i | 0.522947 | 2.49566 | + | 1.44087i | −0.183472 | + | 0.229216i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
63.4 | 0.511309 | + | 0.885613i | −0.721300 | + | 2.69193i | 0.477126 | − | 0.826407i | −1.69584 | − | 1.45744i | −2.75281 | + | 0.737614i | 0.834479 | + | 0.481787i | 3.02107 | −4.12812 | − | 2.38337i | 0.423625 | − | 2.24706i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
63.5 | 1.12540 | + | 1.94926i | 0.514229 | − | 1.91913i | −1.53307 | + | 2.65535i | −2.22228 | + | 0.247944i | 4.31958 | − | 1.15743i | −1.10607 | − | 0.638592i | −2.39966 | −0.820542 | − | 0.473740i | −2.98427 | − | 4.05275i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
65.o | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 65.2.o.a | ✓ | 20 |
3.b | odd | 2 | 1 | 585.2.cf.a | 20 | ||
5.b | even | 2 | 1 | 325.2.s.b | 20 | ||
5.c | odd | 4 | 1 | 65.2.t.a | yes | 20 | |
5.c | odd | 4 | 1 | 325.2.x.b | 20 | ||
13.b | even | 2 | 1 | 845.2.o.g | 20 | ||
13.c | even | 3 | 1 | 845.2.k.e | 20 | ||
13.c | even | 3 | 1 | 845.2.o.e | 20 | ||
13.d | odd | 4 | 1 | 845.2.t.e | 20 | ||
13.d | odd | 4 | 1 | 845.2.t.f | 20 | ||
13.e | even | 6 | 1 | 845.2.k.d | 20 | ||
13.e | even | 6 | 1 | 845.2.o.f | 20 | ||
13.f | odd | 12 | 1 | 65.2.t.a | yes | 20 | |
13.f | odd | 12 | 1 | 845.2.f.d | 20 | ||
13.f | odd | 12 | 1 | 845.2.f.e | 20 | ||
13.f | odd | 12 | 1 | 845.2.t.g | 20 | ||
15.e | even | 4 | 1 | 585.2.dp.a | 20 | ||
39.k | even | 12 | 1 | 585.2.dp.a | 20 | ||
65.f | even | 4 | 1 | 845.2.o.f | 20 | ||
65.h | odd | 4 | 1 | 845.2.t.g | 20 | ||
65.k | even | 4 | 1 | 845.2.o.e | 20 | ||
65.o | even | 12 | 1 | inner | 65.2.o.a | ✓ | 20 |
65.o | even | 12 | 1 | 845.2.k.e | 20 | ||
65.q | odd | 12 | 1 | 845.2.f.e | 20 | ||
65.q | odd | 12 | 1 | 845.2.t.f | 20 | ||
65.r | odd | 12 | 1 | 845.2.f.d | 20 | ||
65.r | odd | 12 | 1 | 845.2.t.e | 20 | ||
65.s | odd | 12 | 1 | 325.2.x.b | 20 | ||
65.t | even | 12 | 1 | 325.2.s.b | 20 | ||
65.t | even | 12 | 1 | 845.2.k.d | 20 | ||
65.t | even | 12 | 1 | 845.2.o.g | 20 | ||
195.bn | odd | 12 | 1 | 585.2.cf.a | 20 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
65.2.o.a | ✓ | 20 | 1.a | even | 1 | 1 | trivial |
65.2.o.a | ✓ | 20 | 65.o | even | 12 | 1 | inner |
65.2.t.a | yes | 20 | 5.c | odd | 4 | 1 | |
65.2.t.a | yes | 20 | 13.f | odd | 12 | 1 | |
325.2.s.b | 20 | 5.b | even | 2 | 1 | ||
325.2.s.b | 20 | 65.t | even | 12 | 1 | ||
325.2.x.b | 20 | 5.c | odd | 4 | 1 | ||
325.2.x.b | 20 | 65.s | odd | 12 | 1 | ||
585.2.cf.a | 20 | 3.b | odd | 2 | 1 | ||
585.2.cf.a | 20 | 195.bn | odd | 12 | 1 | ||
585.2.dp.a | 20 | 15.e | even | 4 | 1 | ||
585.2.dp.a | 20 | 39.k | even | 12 | 1 | ||
845.2.f.d | 20 | 13.f | odd | 12 | 1 | ||
845.2.f.d | 20 | 65.r | odd | 12 | 1 | ||
845.2.f.e | 20 | 13.f | odd | 12 | 1 | ||
845.2.f.e | 20 | 65.q | odd | 12 | 1 | ||
845.2.k.d | 20 | 13.e | even | 6 | 1 | ||
845.2.k.d | 20 | 65.t | even | 12 | 1 | ||
845.2.k.e | 20 | 13.c | even | 3 | 1 | ||
845.2.k.e | 20 | 65.o | even | 12 | 1 | ||
845.2.o.e | 20 | 13.c | even | 3 | 1 | ||
845.2.o.e | 20 | 65.k | even | 4 | 1 | ||
845.2.o.f | 20 | 13.e | even | 6 | 1 | ||
845.2.o.f | 20 | 65.f | even | 4 | 1 | ||
845.2.o.g | 20 | 13.b | even | 2 | 1 | ||
845.2.o.g | 20 | 65.t | even | 12 | 1 | ||
845.2.t.e | 20 | 13.d | odd | 4 | 1 | ||
845.2.t.e | 20 | 65.r | odd | 12 | 1 | ||
845.2.t.f | 20 | 13.d | odd | 4 | 1 | ||
845.2.t.f | 20 | 65.q | odd | 12 | 1 | ||
845.2.t.g | 20 | 13.f | odd | 12 | 1 | ||
845.2.t.g | 20 | 65.h | odd | 4 | 1 |
Hecke kernels
This newform subspace is the entire newspace .