| L(s) = 1 | + (1.20 + 0.742i)2-s + (0.898 + 1.78i)4-s + (3.07 − 1.11i)5-s + (1.33 − 0.235i)7-s + (−0.245 + 2.81i)8-s + (4.53 + 0.935i)10-s + (0.982 − 2.69i)11-s + (−2.36 + 2.82i)13-s + (1.78 + 0.709i)14-s + (−2.38 + 3.20i)16-s + (−1.94 − 1.12i)17-s + (−1.22 − 2.12i)19-s + (4.76 + 4.48i)20-s + (3.18 − 2.51i)22-s + (1.08 − 6.17i)23-s + ⋯ |
| L(s) = 1 | + (0.851 + 0.524i)2-s + (0.449 + 0.893i)4-s + (1.37 − 0.500i)5-s + (0.505 − 0.0891i)7-s + (−0.0867 + 0.996i)8-s + (1.43 + 0.295i)10-s + (0.296 − 0.813i)11-s + (−0.656 + 0.782i)13-s + (0.477 + 0.189i)14-s + (−0.596 + 0.802i)16-s + (−0.470 − 0.271i)17-s + (−0.280 − 0.486i)19-s + (1.06 + 1.00i)20-s + (0.679 − 0.537i)22-s + (0.227 − 1.28i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.767 - 0.641i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.767 - 0.641i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.85477 + 1.03595i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.85477 + 1.03595i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-1.20 - 0.742i)T \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + (-3.07 + 1.11i)T + (3.83 - 3.21i)T^{2} \) |
| 7 | \( 1 + (-1.33 + 0.235i)T + (6.57 - 2.39i)T^{2} \) |
| 11 | \( 1 + (-0.982 + 2.69i)T + (-8.42 - 7.07i)T^{2} \) |
| 13 | \( 1 + (2.36 - 2.82i)T + (-2.25 - 12.8i)T^{2} \) |
| 17 | \( 1 + (1.94 + 1.12i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.22 + 2.12i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.08 + 6.17i)T + (-21.6 - 7.86i)T^{2} \) |
| 29 | \( 1 + (5.00 - 4.19i)T + (5.03 - 28.5i)T^{2} \) |
| 31 | \( 1 + (-4.65 - 0.820i)T + (29.1 + 10.6i)T^{2} \) |
| 37 | \( 1 + (-3.70 - 2.14i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (7.28 - 8.67i)T + (-7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 + (3.24 + 1.17i)T + (32.9 + 27.6i)T^{2} \) |
| 47 | \( 1 + (-2.21 - 12.5i)T + (-44.1 + 16.0i)T^{2} \) |
| 53 | \( 1 + 4.14T + 53T^{2} \) |
| 59 | \( 1 + (3.92 + 10.7i)T + (-45.1 + 37.9i)T^{2} \) |
| 61 | \( 1 + (-9.59 + 1.69i)T + (57.3 - 20.8i)T^{2} \) |
| 67 | \( 1 + (6.64 + 5.57i)T + (11.6 + 65.9i)T^{2} \) |
| 71 | \( 1 + (-3.19 + 5.53i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (2.87 + 4.97i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.31 - 6.33i)T + (-13.7 + 77.7i)T^{2} \) |
| 83 | \( 1 + (-1.56 - 1.85i)T + (-14.4 + 81.7i)T^{2} \) |
| 89 | \( 1 + (1.06 - 0.612i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-16.9 - 6.17i)T + (74.3 + 62.3i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.87358758942443565067149191211, −9.595776646411458457860434614171, −8.866853376854530300595811934597, −8.013584387668930830015988467143, −6.67451639812122391127434243081, −6.23532635886123098397937194629, −5.02771074006933996881974548878, −4.57219011289188309208722200437, −2.93326164768558004140663182090, −1.78715568436935181157715107928,
1.73243069851121533583687342272, 2.44942058200640081863778327004, 3.81659892346521102572136699597, 5.07411887959761472946625130538, 5.71176231019905021478058779817, 6.63964017862973411073016431059, 7.57084462719961266952711092641, 9.071858305700026360479865078135, 10.07461342948736102564788618655, 10.23477835530272481709941412462