Properties

Label 648.2.v.b.611.25
Level $648$
Weight $2$
Character 648.611
Analytic conductor $5.174$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [648,2,Mod(35,648)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("648.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(648, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 9, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.v (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [192] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(32\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 216)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 611.25
Character \(\chi\) \(=\) 648.611
Dual form 648.2.v.b.35.25

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.20377 + 0.742249i) q^{2} +(0.898133 + 1.78700i) q^{4} +(3.07462 - 1.11907i) q^{5} +(1.33825 - 0.235969i) q^{7} +(-0.245250 + 2.81777i) q^{8} +(4.53177 + 0.935029i) q^{10} +(0.982057 - 2.69818i) q^{11} +(-2.36880 + 2.82303i) q^{13} +(1.78609 + 0.709260i) q^{14} +(-2.38671 + 3.20992i) q^{16} +(-1.94027 - 1.12022i) q^{17} +(-1.22444 - 2.12079i) q^{19} +(4.76119 + 4.48926i) q^{20} +(3.18489 - 2.51906i) q^{22} +(1.08869 - 6.17426i) q^{23} +(4.37075 - 3.66750i) q^{25} +(-4.94689 + 1.64004i) q^{26} +(1.62360 + 2.17951i) q^{28} +(-5.00298 + 4.19800i) q^{29} +(4.65080 + 0.820062i) q^{31} +(-5.25562 + 2.09248i) q^{32} +(-1.50416 - 2.78865i) q^{34} +(3.85054 - 2.22311i) q^{35} +(3.70698 + 2.14023i) q^{37} +(0.100210 - 3.46179i) q^{38} +(2.39924 + 8.93804i) q^{40} +(-7.28211 + 8.67848i) q^{41} +(-3.24005 - 1.17928i) q^{43} +(5.70365 - 0.668391i) q^{44} +(5.89337 - 6.62433i) q^{46} +(2.21737 + 12.5753i) q^{47} +(-4.84262 + 1.76257i) q^{49} +(7.98359 - 1.17064i) q^{50} +(-7.17224 - 1.69759i) q^{52} -4.14210 q^{53} -9.39487i q^{55} +(0.336703 + 3.82875i) q^{56} +(-9.13841 + 1.33998i) q^{58} +(-3.92440 - 10.7822i) q^{59} +(9.59806 - 1.69240i) q^{61} +(4.98981 + 4.43922i) q^{62} +(-7.87971 - 1.38212i) q^{64} +(-4.12400 + 11.3306i) q^{65} +(-6.64683 - 5.57735i) q^{67} +(0.259201 - 4.47336i) q^{68} +(6.28527 + 0.181942i) q^{70} +(3.19451 - 5.53306i) q^{71} +(-2.87137 - 4.97336i) q^{73} +(2.87378 + 5.32784i) q^{74} +(2.69014 - 4.09283i) q^{76} +(0.677549 - 3.84257i) q^{77} +(5.31972 + 6.33979i) q^{79} +(-3.74612 + 12.5402i) q^{80} +(-15.2076 + 5.04177i) q^{82} +(1.56022 + 1.85940i) q^{83} +(-7.21919 - 1.27294i) q^{85} +(-3.02496 - 3.82451i) q^{86} +(7.36201 + 3.42894i) q^{88} +(-1.06132 + 0.612754i) q^{89} +(-2.50390 + 4.33688i) q^{91} +(12.0112 - 3.59982i) q^{92} +(-6.66482 + 16.7837i) q^{94} +(-6.13801 - 5.15040i) q^{95} +(16.9633 + 6.17414i) q^{97} +(-7.13768 - 1.47270i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 6 q^{2} - 6 q^{4} + 9 q^{8} - 3 q^{10} + 30 q^{11} - 9 q^{14} - 6 q^{16} + 18 q^{17} - 6 q^{19} + 27 q^{20} - 18 q^{22} - 12 q^{25} - 12 q^{28} + 36 q^{32} + 12 q^{34} + 18 q^{35} + 102 q^{38} + 9 q^{40}+ \cdots - 162 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.20377 + 0.742249i 0.851195 + 0.524849i
\(3\) 0 0
\(4\) 0.898133 + 1.78700i 0.449066 + 0.893498i
\(5\) 3.07462 1.11907i 1.37501 0.500464i 0.454350 0.890823i \(-0.349872\pi\)
0.920662 + 0.390360i \(0.127649\pi\)
\(6\) 0 0
\(7\) 1.33825 0.235969i 0.505810 0.0891880i 0.0850807 0.996374i \(-0.472885\pi\)
0.420730 + 0.907186i \(0.361774\pi\)
\(8\) −0.245250 + 2.81777i −0.0867089 + 0.996234i
\(9\) 0 0
\(10\) 4.53177 + 0.935029i 1.43307 + 0.295682i
\(11\) 0.982057 2.69818i 0.296101 0.813531i −0.699041 0.715082i \(-0.746389\pi\)
0.995142 0.0984497i \(-0.0313883\pi\)
\(12\) 0 0
\(13\) −2.36880 + 2.82303i −0.656987 + 0.782967i −0.986950 0.161027i \(-0.948519\pi\)
0.329963 + 0.943994i \(0.392964\pi\)
\(14\) 1.78609 + 0.709260i 0.477354 + 0.189558i
\(15\) 0 0
\(16\) −2.38671 + 3.20992i −0.596679 + 0.802480i
\(17\) −1.94027 1.12022i −0.470585 0.271692i 0.245900 0.969295i \(-0.420917\pi\)
−0.716484 + 0.697603i \(0.754250\pi\)
\(18\) 0 0
\(19\) −1.22444 2.12079i −0.280906 0.486544i 0.690702 0.723139i \(-0.257302\pi\)
−0.971608 + 0.236596i \(0.923968\pi\)
\(20\) 4.76119 + 4.48926i 1.06464 + 1.00383i
\(21\) 0 0
\(22\) 3.18489 2.51906i 0.679021 0.537066i
\(23\) 1.08869 6.17426i 0.227007 1.28742i −0.631803 0.775129i \(-0.717685\pi\)
0.858810 0.512294i \(-0.171204\pi\)
\(24\) 0 0
\(25\) 4.37075 3.66750i 0.874151 0.733500i
\(26\) −4.94689 + 1.64004i −0.970164 + 0.321638i
\(27\) 0 0
\(28\) 1.62360 + 2.17951i 0.306832 + 0.411889i
\(29\) −5.00298 + 4.19800i −0.929030 + 0.779549i −0.975643 0.219364i \(-0.929602\pi\)
0.0466128 + 0.998913i \(0.485157\pi\)
\(30\) 0 0
\(31\) 4.65080 + 0.820062i 0.835309 + 0.147287i 0.574913 0.818215i \(-0.305036\pi\)
0.260396 + 0.965502i \(0.416147\pi\)
\(32\) −5.25562 + 2.09248i −0.929071 + 0.369901i
\(33\) 0 0
\(34\) −1.50416 2.78865i −0.257962 0.478249i
\(35\) 3.85054 2.22311i 0.650860 0.375774i
\(36\) 0 0
\(37\) 3.70698 + 2.14023i 0.609424 + 0.351851i 0.772740 0.634723i \(-0.218886\pi\)
−0.163316 + 0.986574i \(0.552219\pi\)
\(38\) 0.100210 3.46179i 0.0162562 0.561577i
\(39\) 0 0
\(40\) 2.39924 + 8.93804i 0.379353 + 1.41323i
\(41\) −7.28211 + 8.67848i −1.13727 + 1.35535i −0.211454 + 0.977388i \(0.567820\pi\)
−0.925821 + 0.377963i \(0.876625\pi\)
\(42\) 0 0
\(43\) −3.24005 1.17928i −0.494103 0.179839i 0.0829367 0.996555i \(-0.473570\pi\)
−0.577040 + 0.816716i \(0.695792\pi\)
\(44\) 5.70365 0.668391i 0.859858 0.100764i
\(45\) 0 0
\(46\) 5.89337 6.62433i 0.868931 0.976704i
\(47\) 2.21737 + 12.5753i 0.323437 + 1.83430i 0.520439 + 0.853899i \(0.325768\pi\)
−0.197002 + 0.980403i \(0.563121\pi\)
\(48\) 0 0
\(49\) −4.84262 + 1.76257i −0.691803 + 0.251796i
\(50\) 7.98359 1.17064i 1.12905 0.165554i
\(51\) 0 0
\(52\) −7.17224 1.69759i −0.994611 0.235413i
\(53\) −4.14210 −0.568961 −0.284481 0.958682i \(-0.591821\pi\)
−0.284481 + 0.958682i \(0.591821\pi\)
\(54\) 0 0
\(55\) 9.39487i 1.26680i
\(56\) 0.336703 + 3.82875i 0.0449939 + 0.511639i
\(57\) 0 0
\(58\) −9.13841 + 1.33998i −1.19993 + 0.175947i
\(59\) −3.92440 10.7822i −0.510913 1.40372i −0.880287 0.474442i \(-0.842650\pi\)
0.369373 0.929281i \(-0.379572\pi\)
\(60\) 0 0
\(61\) 9.59806 1.69240i 1.22891 0.216689i 0.478750 0.877951i \(-0.341090\pi\)
0.750155 + 0.661262i \(0.229979\pi\)
\(62\) 4.98981 + 4.43922i 0.633707 + 0.563781i
\(63\) 0 0
\(64\) −7.87971 1.38212i −0.984963 0.172765i
\(65\) −4.12400 + 11.3306i −0.511519 + 1.40539i
\(66\) 0 0
\(67\) −6.64683 5.57735i −0.812039 0.681382i 0.139054 0.990285i \(-0.455594\pi\)
−0.951094 + 0.308903i \(0.900038\pi\)
\(68\) 0.259201 4.47336i 0.0314328 0.542474i
\(69\) 0 0
\(70\) 6.28527 + 0.181942i 0.751234 + 0.0217462i
\(71\) 3.19451 5.53306i 0.379119 0.656653i −0.611816 0.791000i \(-0.709561\pi\)
0.990934 + 0.134348i \(0.0428939\pi\)
\(72\) 0 0
\(73\) −2.87137 4.97336i −0.336069 0.582088i 0.647621 0.761963i \(-0.275764\pi\)
−0.983690 + 0.179875i \(0.942431\pi\)
\(74\) 2.87378 + 5.32784i 0.334070 + 0.619349i
\(75\) 0 0
\(76\) 2.69014 4.09283i 0.308580 0.469479i
\(77\) 0.677549 3.84257i 0.0772138 0.437901i
\(78\) 0 0
\(79\) 5.31972 + 6.33979i 0.598515 + 0.713283i 0.977219 0.212236i \(-0.0680744\pi\)
−0.378703 + 0.925518i \(0.623630\pi\)
\(80\) −3.74612 + 12.5402i −0.418828 + 1.40204i
\(81\) 0 0
\(82\) −15.2076 + 5.04177i −1.67940 + 0.556771i
\(83\) 1.56022 + 1.85940i 0.171257 + 0.204096i 0.844845 0.535011i \(-0.179692\pi\)
−0.673589 + 0.739106i \(0.735248\pi\)
\(84\) 0 0
\(85\) −7.21919 1.27294i −0.783032 0.138070i
\(86\) −3.02496 3.82451i −0.326190 0.412408i
\(87\) 0 0
\(88\) 7.36201 + 3.42894i 0.784793 + 0.365526i
\(89\) −1.06132 + 0.612754i −0.112500 + 0.0649518i −0.555194 0.831721i \(-0.687356\pi\)
0.442694 + 0.896673i \(0.354023\pi\)
\(90\) 0 0
\(91\) −2.50390 + 4.33688i −0.262480 + 0.454628i
\(92\) 12.0112 3.59982i 1.25225 0.375308i
\(93\) 0 0
\(94\) −6.66482 + 16.7837i −0.687424 + 1.73110i
\(95\) −6.13801 5.15040i −0.629747 0.528420i
\(96\) 0 0
\(97\) 16.9633 + 6.17414i 1.72236 + 0.626889i 0.998041 0.0625705i \(-0.0199298\pi\)
0.724324 + 0.689460i \(0.242152\pi\)
\(98\) −7.13768 1.47270i −0.721014 0.148765i
\(99\) 0 0
\(100\) 10.4793 + 4.51662i 1.04793 + 0.451662i
\(101\) −3.06146 17.3624i −0.304627 1.72763i −0.625255 0.780420i \(-0.715005\pi\)
0.320628 0.947205i \(-0.396106\pi\)
\(102\) 0 0
\(103\) −3.18775 8.75828i −0.314099 0.862979i −0.991818 0.127658i \(-0.959254\pi\)
0.677720 0.735320i \(-0.262968\pi\)
\(104\) −7.37371 7.36709i −0.723051 0.722403i
\(105\) 0 0
\(106\) −4.98614 3.07447i −0.484297 0.298619i
\(107\) 3.23586i 0.312823i 0.987692 + 0.156411i \(0.0499926\pi\)
−0.987692 + 0.156411i \(0.950007\pi\)
\(108\) 0 0
\(109\) 7.62757i 0.730589i −0.930892 0.365295i \(-0.880968\pi\)
0.930892 0.365295i \(-0.119032\pi\)
\(110\) 6.97333 11.3093i 0.664881 1.07830i
\(111\) 0 0
\(112\) −2.43657 + 4.85886i −0.230235 + 0.459119i
\(113\) −2.66170 7.31296i −0.250392 0.687946i −0.999670 0.0256902i \(-0.991822\pi\)
0.749278 0.662255i \(-0.230401\pi\)
\(114\) 0 0
\(115\) −3.56213 20.2018i −0.332170 1.88383i
\(116\) −11.9952 5.16995i −1.11372 0.480018i
\(117\) 0 0
\(118\) 3.27900 15.8922i 0.301856 1.46299i
\(119\) −2.86090 1.04128i −0.262258 0.0954542i
\(120\) 0 0
\(121\) 2.11076 + 1.77114i 0.191887 + 0.161012i
\(122\) 12.8101 + 5.08689i 1.15977 + 0.460545i
\(123\) 0 0
\(124\) 2.71159 + 9.04749i 0.243508 + 0.812489i
\(125\) 1.15436 1.99942i 0.103249 0.178833i
\(126\) 0 0
\(127\) −9.21001 + 5.31740i −0.817256 + 0.471843i −0.849469 0.527638i \(-0.823078\pi\)
0.0322133 + 0.999481i \(0.489744\pi\)
\(128\) −8.45949 7.51246i −0.747721 0.664014i
\(129\) 0 0
\(130\) −13.3745 + 10.5784i −1.17302 + 0.927788i
\(131\) −18.4239 3.24863i −1.60970 0.283834i −0.704784 0.709422i \(-0.748956\pi\)
−0.904917 + 0.425588i \(0.860067\pi\)
\(132\) 0 0
\(133\) −2.13905 2.54922i −0.185479 0.221045i
\(134\) −3.86148 11.6475i −0.333581 1.00619i
\(135\) 0 0
\(136\) 3.63236 5.19251i 0.311473 0.445254i
\(137\) 4.50049 + 5.36347i 0.384502 + 0.458232i 0.923230 0.384248i \(-0.125539\pi\)
−0.538727 + 0.842480i \(0.681095\pi\)
\(138\) 0 0
\(139\) 2.26112 12.8235i 0.191786 1.08767i −0.725136 0.688606i \(-0.758223\pi\)
0.916922 0.399067i \(-0.130666\pi\)
\(140\) 7.43099 + 4.88426i 0.628033 + 0.412795i
\(141\) 0 0
\(142\) 7.95237 4.28941i 0.667348 0.359960i
\(143\) 5.29073 + 9.16382i 0.442433 + 0.766317i
\(144\) 0 0
\(145\) −10.6844 + 18.5059i −0.887292 + 1.53684i
\(146\) 0.234997 8.11807i 0.0194485 0.671856i
\(147\) 0 0
\(148\) −0.495216 + 8.54657i −0.0407065 + 0.702523i
\(149\) −5.35782 4.49574i −0.438929 0.368305i 0.396379 0.918087i \(-0.370267\pi\)
−0.835309 + 0.549781i \(0.814711\pi\)
\(150\) 0 0
\(151\) −3.81995 + 10.4952i −0.310863 + 0.854089i 0.681620 + 0.731706i \(0.261276\pi\)
−0.992483 + 0.122383i \(0.960947\pi\)
\(152\) 6.27621 2.93007i 0.509068 0.237660i
\(153\) 0 0
\(154\) 3.66776 4.12267i 0.295556 0.332214i
\(155\) 15.2172 2.68320i 1.22227 0.215519i
\(156\) 0 0
\(157\) −2.38479 6.55217i −0.190327 0.522920i 0.807422 0.589974i \(-0.200862\pi\)
−0.997749 + 0.0670544i \(0.978640\pi\)
\(158\) 1.69802 + 11.5802i 0.135087 + 0.921273i
\(159\) 0 0
\(160\) −13.8174 + 12.3150i −1.09236 + 0.973585i
\(161\) 8.51960i 0.671438i
\(162\) 0 0
\(163\) −2.76444 −0.216528 −0.108264 0.994122i \(-0.534529\pi\)
−0.108264 + 0.994122i \(0.534529\pi\)
\(164\) −22.0487 5.21868i −1.72172 0.407510i
\(165\) 0 0
\(166\) 0.498013 + 3.39637i 0.0386533 + 0.263609i
\(167\) 14.0653 5.11934i 1.08840 0.396146i 0.265374 0.964146i \(-0.414505\pi\)
0.823029 + 0.567999i \(0.192282\pi\)
\(168\) 0 0
\(169\) −0.100838 0.571881i −0.00775677 0.0439908i
\(170\) −7.74542 6.89077i −0.594047 0.528498i
\(171\) 0 0
\(172\) −0.802623 6.84911i −0.0611994 0.522240i
\(173\) 7.26501 + 2.64425i 0.552349 + 0.201038i 0.603090 0.797673i \(-0.293936\pi\)
−0.0507411 + 0.998712i \(0.516158\pi\)
\(174\) 0 0
\(175\) 4.98374 5.93939i 0.376735 0.448975i
\(176\) 6.31705 + 9.59211i 0.476166 + 0.723032i
\(177\) 0 0
\(178\) −1.73240 0.0501485i −0.129849 0.00375879i
\(179\) 5.90573 + 3.40968i 0.441415 + 0.254851i 0.704198 0.710004i \(-0.251307\pi\)
−0.262782 + 0.964855i \(0.584640\pi\)
\(180\) 0 0
\(181\) −5.60659 + 3.23697i −0.416734 + 0.240602i −0.693679 0.720284i \(-0.744011\pi\)
0.276945 + 0.960886i \(0.410678\pi\)
\(182\) −6.23316 + 3.36209i −0.462033 + 0.249215i
\(183\) 0 0
\(184\) 17.1307 + 4.58192i 1.26289 + 0.337783i
\(185\) 13.7926 + 2.43201i 1.01405 + 0.178805i
\(186\) 0 0
\(187\) −4.92800 + 4.13508i −0.360371 + 0.302387i
\(188\) −20.4806 + 15.2568i −1.49370 + 1.11271i
\(189\) 0 0
\(190\) −3.56588 10.7558i −0.258696 0.780311i
\(191\) 6.03023 5.05997i 0.436332 0.366126i −0.398003 0.917384i \(-0.630296\pi\)
0.834335 + 0.551258i \(0.185852\pi\)
\(192\) 0 0
\(193\) −3.98502 + 22.6002i −0.286848 + 1.62680i 0.411761 + 0.911292i \(0.364914\pi\)
−0.698609 + 0.715504i \(0.746197\pi\)
\(194\) 15.8372 + 20.0233i 1.13705 + 1.43759i
\(195\) 0 0
\(196\) −7.49902 7.07073i −0.535645 0.505052i
\(197\) 9.17303 + 15.8882i 0.653551 + 1.13198i 0.982255 + 0.187551i \(0.0600550\pi\)
−0.328704 + 0.944433i \(0.606612\pi\)
\(198\) 0 0
\(199\) −1.73990 1.00453i −0.123338 0.0712092i 0.437062 0.899432i \(-0.356019\pi\)
−0.560400 + 0.828222i \(0.689352\pi\)
\(200\) 9.26225 + 13.2152i 0.654940 + 0.934459i
\(201\) 0 0
\(202\) 9.20194 23.1728i 0.647446 1.63043i
\(203\) −5.70463 + 6.79852i −0.400387 + 0.477162i
\(204\) 0 0
\(205\) −12.6779 + 34.8322i −0.885463 + 2.43279i
\(206\) 2.66350 12.9091i 0.185575 0.899418i
\(207\) 0 0
\(208\) −3.40804 14.3414i −0.236305 0.994399i
\(209\) −6.92475 + 1.22102i −0.478995 + 0.0844598i
\(210\) 0 0
\(211\) 4.02245 1.46405i 0.276917 0.100790i −0.199828 0.979831i \(-0.564038\pi\)
0.476746 + 0.879041i \(0.341816\pi\)
\(212\) −3.72016 7.40192i −0.255501 0.508366i
\(213\) 0 0
\(214\) −2.40182 + 3.89524i −0.164185 + 0.266273i
\(215\) −11.2816 −0.769401
\(216\) 0 0
\(217\) 6.41744 0.435644
\(218\) 5.66156 9.18186i 0.383449 0.621874i
\(219\) 0 0
\(220\) 16.7886 8.43784i 1.13189 0.568879i
\(221\) 7.75851 2.82387i 0.521894 0.189954i
\(222\) 0 0
\(223\) 14.9594 2.63774i 1.00175 0.176636i 0.351366 0.936238i \(-0.385717\pi\)
0.650388 + 0.759602i \(0.274606\pi\)
\(224\) −6.53957 + 4.04042i −0.436943 + 0.269962i
\(225\) 0 0
\(226\) 2.22396 10.7788i 0.147936 0.716994i
\(227\) 6.27979 17.2536i 0.416805 1.14516i −0.536698 0.843775i \(-0.680328\pi\)
0.953502 0.301386i \(-0.0974494\pi\)
\(228\) 0 0
\(229\) 13.7865 16.4302i 0.911040 1.08574i −0.0849601 0.996384i \(-0.527076\pi\)
0.996000 0.0893510i \(-0.0284793\pi\)
\(230\) 10.7068 26.9624i 0.705986 1.77785i
\(231\) 0 0
\(232\) −10.6020 15.1268i −0.696058 0.993125i
\(233\) −4.91994 2.84053i −0.322316 0.186089i 0.330108 0.943943i \(-0.392915\pi\)
−0.652424 + 0.757854i \(0.726248\pi\)
\(234\) 0 0
\(235\) 20.8903 + 36.1830i 1.36273 + 2.36032i
\(236\) 15.7431 16.6967i 1.02479 1.08687i
\(237\) 0 0
\(238\) −2.67098 3.37697i −0.173134 0.218896i
\(239\) −1.83559 + 10.4102i −0.118735 + 0.673377i 0.866099 + 0.499873i \(0.166620\pi\)
−0.984833 + 0.173504i \(0.944491\pi\)
\(240\) 0 0
\(241\) 5.42614 4.55307i 0.349528 0.293289i −0.451072 0.892487i \(-0.648958\pi\)
0.800601 + 0.599198i \(0.204514\pi\)
\(242\) 1.22625 + 3.69875i 0.0788261 + 0.237765i
\(243\) 0 0
\(244\) 11.6446 + 15.6317i 0.745472 + 1.00072i
\(245\) −12.9168 + 10.8385i −0.825223 + 0.692444i
\(246\) 0 0
\(247\) 8.88752 + 1.56711i 0.565499 + 0.0997128i
\(248\) −3.45136 + 12.9038i −0.219161 + 0.819391i
\(249\) 0 0
\(250\) 2.87365 1.55002i 0.181746 0.0980316i
\(251\) 1.58934 0.917608i 0.100318 0.0579189i −0.449001 0.893531i \(-0.648220\pi\)
0.549320 + 0.835612i \(0.314887\pi\)
\(252\) 0 0
\(253\) −15.5901 9.00095i −0.980142 0.565885i
\(254\) −15.0336 0.435183i −0.943291 0.0273058i
\(255\) 0 0
\(256\) −4.60718 15.3223i −0.287949 0.957646i
\(257\) 4.18774 4.99076i 0.261224 0.311315i −0.619451 0.785035i \(-0.712645\pi\)
0.880675 + 0.473720i \(0.157089\pi\)
\(258\) 0 0
\(259\) 5.46589 + 1.98942i 0.339634 + 0.123617i
\(260\) −23.9516 + 2.80681i −1.48542 + 0.174071i
\(261\) 0 0
\(262\) −19.7668 17.5857i −1.22120 1.08645i
\(263\) −0.191952 1.08861i −0.0118363 0.0671268i 0.978318 0.207111i \(-0.0664060\pi\)
−0.990154 + 0.139984i \(0.955295\pi\)
\(264\) 0 0
\(265\) −12.7354 + 4.63530i −0.782329 + 0.284744i
\(266\) −0.682771 4.65638i −0.0418634 0.285501i
\(267\) 0 0
\(268\) 3.99697 16.8871i 0.244154 1.03154i
\(269\) 2.45873 0.149911 0.0749556 0.997187i \(-0.476118\pi\)
0.0749556 + 0.997187i \(0.476118\pi\)
\(270\) 0 0
\(271\) 10.4347i 0.633866i 0.948448 + 0.316933i \(0.102653\pi\)
−0.948448 + 0.316933i \(0.897347\pi\)
\(272\) 8.22667 3.55448i 0.498815 0.215522i
\(273\) 0 0
\(274\) 1.43653 + 9.79688i 0.0867838 + 0.591851i
\(275\) −5.60324 15.3948i −0.337888 0.928339i
\(276\) 0 0
\(277\) −8.82313 + 1.55576i −0.530130 + 0.0934763i −0.432305 0.901727i \(-0.642300\pi\)
−0.0978251 + 0.995204i \(0.531189\pi\)
\(278\) 12.2401 13.7582i 0.734111 0.825163i
\(279\) 0 0
\(280\) 5.31988 + 11.3952i 0.317924 + 0.680992i
\(281\) −8.31065 + 22.8333i −0.495772 + 1.36212i 0.399554 + 0.916710i \(0.369165\pi\)
−0.895326 + 0.445412i \(0.853057\pi\)
\(282\) 0 0
\(283\) −5.06269 4.24810i −0.300946 0.252524i 0.479792 0.877382i \(-0.340712\pi\)
−0.780738 + 0.624859i \(0.785157\pi\)
\(284\) 12.7566 + 0.739162i 0.756968 + 0.0438612i
\(285\) 0 0
\(286\) −0.433000 + 14.9582i −0.0256038 + 0.884496i
\(287\) −7.69742 + 13.3323i −0.454364 + 0.786982i
\(288\) 0 0
\(289\) −5.99024 10.3754i −0.352367 0.610317i
\(290\) −26.5976 + 14.3464i −1.56187 + 0.842452i
\(291\) 0 0
\(292\) 6.30851 9.59787i 0.369178 0.561673i
\(293\) −5.28397 + 29.9669i −0.308693 + 1.75068i 0.296900 + 0.954908i \(0.404047\pi\)
−0.605593 + 0.795775i \(0.707064\pi\)
\(294\) 0 0
\(295\) −24.1321 28.7595i −1.40502 1.67444i
\(296\) −6.93981 + 9.92054i −0.403368 + 0.576620i
\(297\) 0 0
\(298\) −3.11263 9.38868i −0.180310 0.543872i
\(299\) 14.8512 + 17.6990i 0.858869 + 1.02356i
\(300\) 0 0
\(301\) −4.61427 0.813620i −0.265962 0.0468963i
\(302\) −12.3884 + 9.79850i −0.712873 + 0.563840i
\(303\) 0 0
\(304\) 9.72997 + 1.13137i 0.558052 + 0.0648886i
\(305\) 27.6165 15.9444i 1.58131 0.912973i
\(306\) 0 0
\(307\) 2.83374 4.90819i 0.161730 0.280125i −0.773759 0.633480i \(-0.781626\pi\)
0.935489 + 0.353355i \(0.114959\pi\)
\(308\) 7.47519 2.24036i 0.425938 0.127656i
\(309\) 0 0
\(310\) 20.3096 + 8.06497i 1.15351 + 0.458059i
\(311\) −0.654416 0.549121i −0.0371085 0.0311378i 0.624045 0.781389i \(-0.285488\pi\)
−0.661153 + 0.750251i \(0.729933\pi\)
\(312\) 0 0
\(313\) 22.1803 + 8.07297i 1.25370 + 0.456311i 0.881652 0.471900i \(-0.156432\pi\)
0.372053 + 0.928212i \(0.378654\pi\)
\(314\) 1.99259 9.65742i 0.112448 0.545000i
\(315\) 0 0
\(316\) −6.55138 + 15.2003i −0.368544 + 0.855084i
\(317\) 3.58128 + 20.3104i 0.201145 + 1.14075i 0.903392 + 0.428815i \(0.141069\pi\)
−0.702248 + 0.711932i \(0.747820\pi\)
\(318\) 0 0
\(319\) 6.41374 + 17.6216i 0.359101 + 0.986621i
\(320\) −25.7738 + 4.56846i −1.44080 + 0.255385i
\(321\) 0 0
\(322\) 6.32366 10.2556i 0.352404 0.571525i
\(323\) 5.48655i 0.305280i
\(324\) 0 0
\(325\) 21.0263i 1.16633i
\(326\) −3.32776 2.05191i −0.184308 0.113645i
\(327\) 0 0
\(328\) −22.6681 22.6477i −1.25163 1.25051i
\(329\) 5.93479 + 16.3057i 0.327196 + 0.898962i
\(330\) 0 0
\(331\) 3.26084 + 18.4932i 0.179232 + 1.01648i 0.933145 + 0.359501i \(0.117053\pi\)
−0.753913 + 0.656975i \(0.771836\pi\)
\(332\) −1.92146 + 4.45810i −0.105454 + 0.244670i
\(333\) 0 0
\(334\) 20.7312 + 4.27742i 1.13436 + 0.234050i
\(335\) −26.6779 9.70997i −1.45757 0.530512i
\(336\) 0 0
\(337\) −5.59075 4.69119i −0.304547 0.255546i 0.477687 0.878530i \(-0.341475\pi\)
−0.782234 + 0.622985i \(0.785920\pi\)
\(338\) 0.303092 0.763260i 0.0164860 0.0415159i
\(339\) 0 0
\(340\) −4.20906 14.0439i −0.228268 0.761640i
\(341\) 6.78002 11.7433i 0.367159 0.635938i
\(342\) 0 0
\(343\) −14.3026 + 8.25759i −0.772266 + 0.445868i
\(344\) 4.11757 8.84052i 0.222005 0.476649i
\(345\) 0 0
\(346\) 6.78273 + 8.57552i 0.364642 + 0.461023i
\(347\) 22.5534 + 3.97677i 1.21073 + 0.213484i 0.742331 0.670034i \(-0.233720\pi\)
0.468398 + 0.883518i \(0.344831\pi\)
\(348\) 0 0
\(349\) 10.5079 + 12.5229i 0.562476 + 0.670333i 0.970069 0.242831i \(-0.0780760\pi\)
−0.407592 + 0.913164i \(0.633632\pi\)
\(350\) 10.4078 3.45049i 0.556320 0.184437i
\(351\) 0 0
\(352\) 0.484555 + 16.2355i 0.0258269 + 0.865357i
\(353\) −2.82906 3.37155i −0.150576 0.179449i 0.685484 0.728088i \(-0.259591\pi\)
−0.836060 + 0.548639i \(0.815146\pi\)
\(354\) 0 0
\(355\) 3.63003 20.5869i 0.192662 1.09264i
\(356\) −2.04820 1.34624i −0.108554 0.0713507i
\(357\) 0 0
\(358\) 4.57833 + 8.48800i 0.241972 + 0.448605i
\(359\) 1.38464 + 2.39827i 0.0730784 + 0.126576i 0.900249 0.435375i \(-0.143384\pi\)
−0.827171 + 0.561951i \(0.810051\pi\)
\(360\) 0 0
\(361\) 6.50149 11.2609i 0.342184 0.592679i
\(362\) −9.15169 0.264917i −0.481002 0.0139237i
\(363\) 0 0
\(364\) −9.99882 0.579364i −0.524080 0.0303669i
\(365\) −14.3939 12.0779i −0.753413 0.632188i
\(366\) 0 0
\(367\) 3.78468 10.3983i 0.197559 0.542788i −0.800869 0.598839i \(-0.795629\pi\)
0.998428 + 0.0560511i \(0.0178510\pi\)
\(368\) 17.2205 + 18.2308i 0.897681 + 0.950347i
\(369\) 0 0
\(370\) 14.7980 + 13.1651i 0.769312 + 0.684423i
\(371\) −5.54316 + 0.977409i −0.287787 + 0.0507445i
\(372\) 0 0
\(373\) 3.74325 + 10.2845i 0.193818 + 0.532510i 0.998092 0.0617485i \(-0.0196677\pi\)
−0.804274 + 0.594259i \(0.797445\pi\)
\(374\) −9.00144 + 1.31989i −0.465453 + 0.0682500i
\(375\) 0 0
\(376\) −35.9783 + 3.16396i −1.85544 + 0.163169i
\(377\) 24.0678i 1.23955i
\(378\) 0 0
\(379\) −9.42607 −0.484185 −0.242092 0.970253i \(-0.577834\pi\)
−0.242092 + 0.970253i \(0.577834\pi\)
\(380\) 3.69100 15.5943i 0.189344 0.799973i
\(381\) 0 0
\(382\) 11.0148 1.61511i 0.563565 0.0826362i
\(383\) 12.6302 4.59701i 0.645372 0.234896i 0.00146378 0.999999i \(-0.499534\pi\)
0.643908 + 0.765103i \(0.277312\pi\)
\(384\) 0 0
\(385\) −2.21690 12.5727i −0.112984 0.640762i
\(386\) −21.5720 + 24.2476i −1.09799 + 1.23417i
\(387\) 0 0
\(388\) 4.20214 + 35.8586i 0.213331 + 1.82044i
\(389\) −7.86520 2.86270i −0.398781 0.145145i 0.134841 0.990867i \(-0.456948\pi\)
−0.533623 + 0.845723i \(0.679170\pi\)
\(390\) 0 0
\(391\) −9.02886 + 10.7602i −0.456609 + 0.544165i
\(392\) −3.77887 14.0777i −0.190862 0.711030i
\(393\) 0 0
\(394\) −0.750732 + 25.9344i −0.0378213 + 1.30656i
\(395\) 23.4508 + 13.5393i 1.17994 + 0.681237i
\(396\) 0 0
\(397\) 18.5938 10.7351i 0.933195 0.538780i 0.0453741 0.998970i \(-0.485552\pi\)
0.887820 + 0.460190i \(0.152219\pi\)
\(398\) −1.34883 2.50066i −0.0676106 0.125347i
\(399\) 0 0
\(400\) 1.34063 + 22.7830i 0.0670317 + 1.13915i
\(401\) 28.7000 + 5.06058i 1.43321 + 0.252713i 0.835716 0.549161i \(-0.185053\pi\)
0.597492 + 0.801875i \(0.296164\pi\)
\(402\) 0 0
\(403\) −13.3319 + 11.1868i −0.664108 + 0.557253i
\(404\) 28.2770 21.0646i 1.40683 1.04800i
\(405\) 0 0
\(406\) −11.9133 + 3.94960i −0.591246 + 0.196016i
\(407\) 9.41517 7.90027i 0.466693 0.391602i
\(408\) 0 0
\(409\) 3.08156 17.4764i 0.152373 0.864152i −0.808775 0.588119i \(-0.799869\pi\)
0.961148 0.276034i \(-0.0890201\pi\)
\(410\) −41.1155 + 32.5199i −2.03055 + 1.60604i
\(411\) 0 0
\(412\) 12.7880 13.5626i 0.630019 0.668181i
\(413\) −7.79609 13.5032i −0.383621 0.664450i
\(414\) 0 0
\(415\) 6.87789 + 3.97095i 0.337622 + 0.194926i
\(416\) 6.54241 19.7934i 0.320768 0.970452i
\(417\) 0 0
\(418\) −9.24212 3.67006i −0.452047 0.179508i
\(419\) −23.7288 + 28.2789i −1.15923 + 1.38151i −0.248436 + 0.968648i \(0.579916\pi\)
−0.910792 + 0.412866i \(0.864528\pi\)
\(420\) 0 0
\(421\) 8.97583 24.6609i 0.437455 1.20190i −0.503687 0.863886i \(-0.668023\pi\)
0.941142 0.338012i \(-0.109754\pi\)
\(422\) 5.92881 + 1.22328i 0.288610 + 0.0595482i
\(423\) 0 0
\(424\) 1.01585 11.6715i 0.0493340 0.566818i
\(425\) −12.5888 + 2.21975i −0.610648 + 0.107674i
\(426\) 0 0
\(427\) 12.4452 4.52969i 0.602267 0.219207i
\(428\) −5.78248 + 2.90624i −0.279507 + 0.140478i
\(429\) 0 0
\(430\) −13.5805 8.37378i −0.654910 0.403819i
\(431\) 12.1132 0.583473 0.291736 0.956499i \(-0.405767\pi\)
0.291736 + 0.956499i \(0.405767\pi\)
\(432\) 0 0
\(433\) 21.9408 1.05441 0.527203 0.849739i \(-0.323241\pi\)
0.527203 + 0.849739i \(0.323241\pi\)
\(434\) 7.72513 + 4.76334i 0.370818 + 0.228647i
\(435\) 0 0
\(436\) 13.6304 6.85057i 0.652780 0.328083i
\(437\) −14.4274 + 5.25114i −0.690155 + 0.251196i
\(438\) 0 0
\(439\) 18.3248 3.23116i 0.874596 0.154215i 0.281708 0.959500i \(-0.409099\pi\)
0.592888 + 0.805285i \(0.297988\pi\)
\(440\) 26.4726 + 2.30409i 1.26203 + 0.109843i
\(441\) 0 0
\(442\) 11.4355 + 2.35946i 0.543931 + 0.112228i
\(443\) −0.178768 + 0.491160i −0.00849351 + 0.0233357i −0.943867 0.330326i \(-0.892841\pi\)
0.935373 + 0.353662i \(0.115064\pi\)
\(444\) 0 0
\(445\) −2.57744 + 3.07168i −0.122183 + 0.145612i
\(446\) 19.9655 + 7.92834i 0.945395 + 0.375418i
\(447\) 0 0
\(448\) −10.8711 + 0.00975332i −0.513613 + 0.000460801i
\(449\) −8.98007 5.18465i −0.423796 0.244679i 0.272904 0.962041i \(-0.412016\pi\)
−0.696700 + 0.717363i \(0.745349\pi\)
\(450\) 0 0
\(451\) 16.2646 + 28.1712i 0.765872 + 1.32653i
\(452\) 10.6777 11.3245i 0.502236 0.532658i
\(453\) 0 0
\(454\) 20.3659 16.1082i 0.955819 0.755996i
\(455\) −2.84526 + 16.1363i −0.133388 + 0.756481i
\(456\) 0 0
\(457\) −5.85958 + 4.91677i −0.274099 + 0.229997i −0.769467 0.638687i \(-0.779478\pi\)
0.495367 + 0.868684i \(0.335033\pi\)
\(458\) 28.7911 9.54511i 1.34532 0.446014i
\(459\) 0 0
\(460\) 32.9014 24.5095i 1.53403 1.14276i
\(461\) −3.98250 + 3.34172i −0.185484 + 0.155639i −0.730801 0.682590i \(-0.760853\pi\)
0.545318 + 0.838229i \(0.316409\pi\)
\(462\) 0 0
\(463\) −24.6573 4.34774i −1.14592 0.202057i −0.431727 0.902004i \(-0.642096\pi\)
−0.714194 + 0.699948i \(0.753207\pi\)
\(464\) −1.53456 26.0786i −0.0712400 1.21067i
\(465\) 0 0
\(466\) −3.81411 7.07117i −0.176685 0.327566i
\(467\) −5.51602 + 3.18467i −0.255251 + 0.147369i −0.622166 0.782885i \(-0.713747\pi\)
0.366915 + 0.930254i \(0.380414\pi\)
\(468\) 0 0
\(469\) −10.2112 5.89543i −0.471509 0.272226i
\(470\) −1.70969 + 59.0619i −0.0788619 + 2.72432i
\(471\) 0 0
\(472\) 31.3443 8.41374i 1.44274 0.387274i
\(473\) −6.36383 + 7.58412i −0.292609 + 0.348718i
\(474\) 0 0
\(475\) −13.1297 4.77883i −0.602434 0.219268i
\(476\) −0.708700 6.04763i −0.0324832 0.277193i
\(477\) 0 0
\(478\) −9.93657 + 11.1690i −0.454488 + 0.510858i
\(479\) 3.99003 + 22.6286i 0.182309 + 1.03393i 0.929364 + 0.369164i \(0.120356\pi\)
−0.747055 + 0.664762i \(0.768533\pi\)
\(480\) 0 0
\(481\) −14.8230 + 5.39513i −0.675871 + 0.245997i
\(482\) 9.91135 1.45331i 0.451449 0.0661966i
\(483\) 0 0
\(484\) −1.26927 + 5.36263i −0.0576942 + 0.243756i
\(485\) 59.0651 2.68201
\(486\) 0 0
\(487\) 17.1809i 0.778541i 0.921124 + 0.389270i \(0.127273\pi\)
−0.921124 + 0.389270i \(0.872727\pi\)
\(488\) 2.41487 + 27.4602i 0.109316 + 1.24307i
\(489\) 0 0
\(490\) −23.5937 + 3.45957i −1.06585 + 0.156288i
\(491\) −4.32122 11.8724i −0.195014 0.535796i 0.803189 0.595724i \(-0.203135\pi\)
−0.998203 + 0.0599285i \(0.980913\pi\)
\(492\) 0 0
\(493\) 14.4098 2.54084i 0.648985 0.114433i
\(494\) 9.53536 + 8.48319i 0.429016 + 0.381677i
\(495\) 0 0
\(496\) −13.7325 + 12.9715i −0.616606 + 0.582435i
\(497\) 2.96942 8.15841i 0.133197 0.365955i
\(498\) 0 0
\(499\) 1.80634 + 1.51570i 0.0808628 + 0.0678519i 0.682323 0.731051i \(-0.260970\pi\)
−0.601460 + 0.798903i \(0.705414\pi\)
\(500\) 4.60972 + 0.267102i 0.206153 + 0.0119452i
\(501\) 0 0
\(502\) 2.59430 + 0.0750982i 0.115789 + 0.00335180i
\(503\) −9.09713 + 15.7567i −0.405621 + 0.702556i −0.994394 0.105743i \(-0.966278\pi\)
0.588773 + 0.808299i \(0.299611\pi\)
\(504\) 0 0
\(505\) −28.8426 49.9569i −1.28348 2.22305i
\(506\) −12.0860 22.4068i −0.537288 0.996106i
\(507\) 0 0
\(508\) −17.7740 11.6825i −0.788593 0.518328i
\(509\) 2.07234 11.7528i 0.0918549 0.520935i −0.903811 0.427932i \(-0.859242\pi\)
0.995666 0.0930030i \(-0.0296466\pi\)
\(510\) 0 0
\(511\) −5.01617 5.97804i −0.221902 0.264453i
\(512\) 5.82699 21.8643i 0.257519 0.966273i
\(513\) 0 0
\(514\) 8.74547 2.89939i 0.385746 0.127886i
\(515\) −19.6023 23.3611i −0.863779 1.02941i
\(516\) 0 0
\(517\) 36.1081 + 6.36683i 1.58803 + 0.280013i
\(518\) 5.10303 + 6.45186i 0.224214 + 0.283478i
\(519\) 0 0
\(520\) −30.9157 14.3993i −1.35574 0.631452i
\(521\) −12.2664 + 7.08202i −0.537402 + 0.310269i −0.744025 0.668152i \(-0.767086\pi\)
0.206624 + 0.978421i \(0.433752\pi\)
\(522\) 0 0
\(523\) 8.17227 14.1548i 0.357349 0.618946i −0.630168 0.776459i \(-0.717014\pi\)
0.987517 + 0.157513i \(0.0503475\pi\)
\(524\) −10.7418 35.8411i −0.469258 1.56573i
\(525\) 0 0
\(526\) 0.576956 1.45292i 0.0251565 0.0633503i
\(527\) −8.10516 6.80104i −0.353066 0.296258i
\(528\) 0 0
\(529\) −15.3234 5.57725i −0.666233 0.242489i
\(530\) −18.7711 3.87298i −0.815362 0.168232i
\(531\) 0 0
\(532\) 2.63430 6.11201i 0.114211 0.264989i
\(533\) −7.24972 41.1152i −0.314020 1.78090i
\(534\) 0 0
\(535\) 3.62116 + 9.94906i 0.156556 + 0.430135i
\(536\) 17.3458 17.3614i 0.749226 0.749899i
\(537\) 0 0
\(538\) 2.95974 + 1.82499i 0.127604 + 0.0786808i
\(539\) 14.7972i 0.637360i
\(540\) 0 0
\(541\) 10.8601i 0.466912i −0.972367 0.233456i \(-0.924996\pi\)
0.972367 0.233456i \(-0.0750035\pi\)
\(542\) −7.74518 + 12.5611i −0.332684 + 0.539543i
\(543\) 0 0
\(544\) 12.5413 + 1.82746i 0.537706 + 0.0783517i
\(545\) −8.53579 23.4519i −0.365633 1.00457i
\(546\) 0 0
\(547\) 0.544866 + 3.09009i 0.0232968 + 0.132123i 0.994238 0.107196i \(-0.0341872\pi\)
−0.970941 + 0.239318i \(0.923076\pi\)
\(548\) −5.54247 + 12.8595i −0.236763 + 0.549329i
\(549\) 0 0
\(550\) 4.68173 22.6908i 0.199630 0.967538i
\(551\) 15.0289 + 5.47009i 0.640255 + 0.233034i
\(552\) 0 0
\(553\) 8.61510 + 7.22893i 0.366351 + 0.307405i
\(554\) −11.7758 4.67618i −0.500305 0.198672i
\(555\) 0 0
\(556\) 24.9463 7.47656i 1.05796 0.317077i
\(557\) −4.03028 + 6.98066i −0.170769 + 0.295780i −0.938689 0.344766i \(-0.887958\pi\)
0.767920 + 0.640546i \(0.221292\pi\)
\(558\) 0 0
\(559\) 11.0042 6.35327i 0.465427 0.268715i
\(560\) −2.05413 + 17.6659i −0.0868030 + 0.746519i
\(561\) 0 0
\(562\) −26.9521 + 21.3175i −1.13691 + 0.899226i
\(563\) −1.45495 0.256547i −0.0613187 0.0108121i 0.142905 0.989736i \(-0.454356\pi\)
−0.204223 + 0.978924i \(0.565467\pi\)
\(564\) 0 0
\(565\) −16.3674 19.5060i −0.688583 0.820622i
\(566\) −2.94118 8.87152i −0.123627 0.372898i
\(567\) 0 0
\(568\) 14.8074 + 10.3584i 0.621307 + 0.434628i
\(569\) −6.48819 7.73232i −0.271999 0.324156i 0.612703 0.790314i \(-0.290082\pi\)
−0.884702 + 0.466158i \(0.845638\pi\)
\(570\) 0 0
\(571\) −4.99821 + 28.3463i −0.209169 + 1.18626i 0.681575 + 0.731749i \(0.261295\pi\)
−0.890743 + 0.454507i \(0.849816\pi\)
\(572\) −11.6239 + 17.6849i −0.486021 + 0.739441i
\(573\) 0 0
\(574\) −19.1618 + 10.3357i −0.799800 + 0.431402i
\(575\) −17.8857 30.9789i −0.745885 1.29191i
\(576\) 0 0
\(577\) 5.35695 9.27852i 0.223013 0.386270i −0.732709 0.680543i \(-0.761744\pi\)
0.955721 + 0.294273i \(0.0950774\pi\)
\(578\) 0.490248 16.9358i 0.0203916 0.704438i
\(579\) 0 0
\(580\) −42.6661 2.47221i −1.77161 0.102653i
\(581\) 2.52673 + 2.12018i 0.104826 + 0.0879597i
\(582\) 0 0
\(583\) −4.06778 + 11.1761i −0.168470 + 0.462868i
\(584\) 14.7180 6.87116i 0.609036 0.284331i
\(585\) 0 0
\(586\) −28.6036 + 32.1512i −1.18160 + 1.32816i
\(587\) 7.19613 1.26887i 0.297016 0.0523720i −0.0231543 0.999732i \(-0.507371\pi\)
0.320171 + 0.947360i \(0.396260\pi\)
\(588\) 0 0
\(589\) −3.95545 10.8675i −0.162981 0.447788i
\(590\) −7.70281 52.5319i −0.317120 2.16270i
\(591\) 0 0
\(592\) −15.7175 + 6.79100i −0.645983 + 0.279108i
\(593\) 13.1080i 0.538281i −0.963101 0.269140i \(-0.913260\pi\)
0.963101 0.269140i \(-0.0867395\pi\)
\(594\) 0 0
\(595\) −9.96145 −0.408380
\(596\) 3.22184 13.6122i 0.131972 0.557576i
\(597\) 0 0
\(598\) 4.74042 + 32.3289i 0.193850 + 1.32203i
\(599\) −6.88675 + 2.50657i −0.281385 + 0.102416i −0.478857 0.877893i \(-0.658949\pi\)
0.197473 + 0.980308i \(0.436727\pi\)
\(600\) 0 0
\(601\) 0.0524110 + 0.297238i 0.00213789 + 0.0121246i 0.985858 0.167583i \(-0.0535961\pi\)
−0.983720 + 0.179707i \(0.942485\pi\)
\(602\) −4.95062 4.40435i −0.201772 0.179508i
\(603\) 0 0
\(604\) −22.1857 + 2.59987i −0.902725 + 0.105787i
\(605\) 8.47180 + 3.08348i 0.344428 + 0.125361i
\(606\) 0 0
\(607\) 9.41990 11.2262i 0.382342 0.455657i −0.540210 0.841530i \(-0.681655\pi\)
0.922552 + 0.385873i \(0.126100\pi\)
\(608\) 10.8729 + 8.58398i 0.440955 + 0.348126i
\(609\) 0 0
\(610\) 45.0786 + 1.30491i 1.82518 + 0.0528342i
\(611\) −40.7530 23.5288i −1.64869 0.951873i
\(612\) 0 0
\(613\) 11.7747 6.79811i 0.475574 0.274573i −0.242996 0.970027i \(-0.578130\pi\)
0.718570 + 0.695454i \(0.244797\pi\)
\(614\) 7.05428 3.80499i 0.284687 0.153557i
\(615\) 0 0
\(616\) 10.6613 + 2.85157i 0.429557 + 0.114893i
\(617\) 21.9238 + 3.86576i 0.882620 + 0.155630i 0.596547 0.802578i \(-0.296539\pi\)
0.286073 + 0.958208i \(0.407650\pi\)
\(618\) 0 0
\(619\) −26.2499 + 22.0263i −1.05507 + 0.885311i −0.993618 0.112799i \(-0.964018\pi\)
−0.0614548 + 0.998110i \(0.519574\pi\)
\(620\) 18.4619 + 24.7831i 0.741447 + 0.995315i
\(621\) 0 0
\(622\) −0.380184 1.14676i −0.0152440 0.0459807i
\(623\) −1.27572 + 1.07046i −0.0511106 + 0.0428869i
\(624\) 0 0
\(625\) −3.64210 + 20.6554i −0.145684 + 0.826216i
\(626\) 20.7079 + 26.1813i 0.827653 + 1.04642i
\(627\) 0 0
\(628\) 9.56684 10.1463i 0.381758 0.404883i
\(629\) −4.79503 8.30523i −0.191190 0.331151i
\(630\) 0 0
\(631\) −4.33363 2.50202i −0.172519 0.0996040i 0.411254 0.911521i \(-0.365091\pi\)
−0.583773 + 0.811917i \(0.698424\pi\)
\(632\) −19.1688 + 13.4349i −0.762493 + 0.534413i
\(633\) 0 0
\(634\) −10.7644 + 27.1073i −0.427507 + 1.07657i
\(635\) −22.3667 + 26.6556i −0.887597 + 1.05780i
\(636\) 0 0
\(637\) 6.49542 17.8460i 0.257358 0.707085i
\(638\) −5.35894 + 25.9730i −0.212163 + 1.02828i
\(639\) 0 0
\(640\) −34.4167 13.6312i −1.36044 0.538820i
\(641\) −21.6772 + 3.82227i −0.856197 + 0.150971i −0.584482 0.811407i \(-0.698702\pi\)
−0.271716 + 0.962378i \(0.587591\pi\)
\(642\) 0 0
\(643\) 17.8842 6.50931i 0.705283 0.256702i 0.0356184 0.999365i \(-0.488660\pi\)
0.669665 + 0.742663i \(0.266438\pi\)
\(644\) 15.2245 7.65173i 0.599929 0.301520i
\(645\) 0 0
\(646\) −4.07239 + 6.60455i −0.160226 + 0.259853i
\(647\) 10.3985 0.408809 0.204405 0.978886i \(-0.434474\pi\)
0.204405 + 0.978886i \(0.434474\pi\)
\(648\) 0 0
\(649\) −32.9463 −1.29325
\(650\) −15.6068 + 25.3109i −0.612148 + 0.992775i
\(651\) 0 0
\(652\) −2.48284 4.94005i −0.0972354 0.193467i
\(653\) 14.2393 5.18267i 0.557225 0.202813i −0.0480285 0.998846i \(-0.515294\pi\)
0.605254 + 0.796033i \(0.293072\pi\)
\(654\) 0 0
\(655\) −60.2819 + 10.6293i −2.35541 + 0.415322i
\(656\) −10.4769 44.0881i −0.409055 1.72135i
\(657\) 0 0
\(658\) −4.95876 + 24.0334i −0.193312 + 0.936921i
\(659\) −3.21036 + 8.82040i −0.125058 + 0.343594i −0.986384 0.164459i \(-0.947412\pi\)
0.861326 + 0.508053i \(0.169635\pi\)
\(660\) 0 0
\(661\) −15.4507 + 18.4135i −0.600964 + 0.716201i −0.977673 0.210131i \(-0.932611\pi\)
0.376709 + 0.926332i \(0.377056\pi\)
\(662\) −9.80122 + 24.6819i −0.380935 + 0.959289i
\(663\) 0 0
\(664\) −5.62201 + 3.94034i −0.218176 + 0.152915i
\(665\) −9.42952 5.44414i −0.365661 0.211115i
\(666\) 0 0
\(667\) 20.4729 + 35.4600i 0.792712 + 1.37302i
\(668\) 21.7807 + 20.5367i 0.842721 + 0.794590i
\(669\) 0 0
\(670\) −24.9069 31.4902i −0.962238 1.21657i
\(671\) 4.85945 27.5593i 0.187597 1.06392i
\(672\) 0 0
\(673\) 7.81263 6.55558i 0.301155 0.252699i −0.479670 0.877449i \(-0.659244\pi\)
0.780825 + 0.624750i \(0.214799\pi\)
\(674\) −3.24795 9.79685i −0.125106 0.377361i
\(675\) 0 0
\(676\) 0.931383 0.693822i 0.0358224 0.0266855i
\(677\) 33.3112 27.9514i 1.28025 1.07426i 0.287044 0.957917i \(-0.407327\pi\)
0.993209 0.116342i \(-0.0371170\pi\)
\(678\) 0 0
\(679\) 24.1580 + 4.25972i 0.927101 + 0.163473i
\(680\) 5.35736 20.0299i 0.205445 0.768111i
\(681\) 0 0
\(682\) 16.8781 9.10384i 0.646295 0.348604i
\(683\) −29.8941 + 17.2593i −1.14386 + 0.660411i −0.947385 0.320097i \(-0.896284\pi\)
−0.196480 + 0.980508i \(0.562951\pi\)
\(684\) 0 0
\(685\) 19.8394 + 11.4543i 0.758024 + 0.437645i
\(686\) −23.3462 0.675812i −0.891363 0.0258026i
\(687\) 0 0
\(688\) 11.5185 7.58570i 0.439138 0.289202i
\(689\) 9.81181 11.6933i 0.373800 0.445478i
\(690\) 0 0
\(691\) −28.1515 10.2463i −1.07093 0.389788i −0.254408 0.967097i \(-0.581881\pi\)
−0.816526 + 0.577309i \(0.804103\pi\)
\(692\) 1.79968 + 15.3574i 0.0684137 + 0.583802i
\(693\) 0 0
\(694\) 24.1974 + 21.5273i 0.918519 + 0.817167i
\(695\) −7.39827 41.9577i −0.280632 1.59154i
\(696\) 0 0
\(697\) 23.8510 8.68106i 0.903422 0.328819i
\(698\) 3.35406 + 22.8742i 0.126953 + 0.865799i
\(699\) 0 0
\(700\) 15.0897 + 3.57156i 0.570338 + 0.134992i
\(701\) −44.3573 −1.67535 −0.837677 0.546167i \(-0.816087\pi\)
−0.837677 + 0.546167i \(0.816087\pi\)
\(702\) 0 0
\(703\) 10.4823i 0.395348i
\(704\) −11.4675 + 19.9035i −0.432198 + 0.750143i
\(705\) 0 0
\(706\) −0.903020 6.15844i −0.0339856 0.231776i
\(707\) −8.19400 22.5128i −0.308167 0.846682i
\(708\) 0 0
\(709\) −19.2193 + 3.38888i −0.721795 + 0.127272i −0.522465 0.852660i \(-0.674988\pi\)
−0.199330 + 0.979932i \(0.563877\pi\)
\(710\) 19.6504 22.0876i 0.737465 0.828932i
\(711\) 0 0
\(712\) −1.46631 3.14084i −0.0549524 0.117708i
\(713\) 10.1266 27.8225i 0.379242 1.04196i
\(714\) 0 0
\(715\) 26.5220 + 22.2546i 0.991865 + 0.832274i
\(716\) −0.788948 + 13.6159i −0.0294844 + 0.508849i
\(717\) 0 0
\(718\) −0.113321 + 3.91471i −0.00422909 + 0.146096i
\(719\) 20.6637 35.7906i 0.770626 1.33476i −0.166595 0.986025i \(-0.553277\pi\)
0.937220 0.348737i \(-0.113389\pi\)
\(720\) 0 0
\(721\) −6.33269 10.9685i −0.235842 0.408490i
\(722\) 16.1847 8.72984i 0.602332 0.324891i
\(723\) 0 0
\(724\) −10.8199 7.11173i −0.402119 0.264305i
\(725\) −6.47064 + 36.6968i −0.240314 + 1.36289i
\(726\) 0 0
\(727\) 5.83712 + 6.95641i 0.216487 + 0.257999i 0.863348 0.504609i \(-0.168363\pi\)
−0.646861 + 0.762608i \(0.723919\pi\)
\(728\) −11.6063 8.11903i −0.430157 0.300911i
\(729\) 0 0
\(730\) −8.36216 25.2230i −0.309498 0.933544i
\(731\) 4.96552 + 5.91768i 0.183657 + 0.218873i
\(732\) 0 0
\(733\) −44.2086 7.79517i −1.63288 0.287921i −0.719337 0.694661i \(-0.755554\pi\)
−0.913544 + 0.406740i \(0.866665\pi\)
\(734\) 12.2740 9.70804i 0.453043 0.358330i
\(735\) 0 0
\(736\) 7.19776 + 34.7276i 0.265313 + 1.28008i
\(737\) −21.5762 + 12.4571i −0.794771 + 0.458861i
\(738\) 0 0
\(739\) 24.0347 41.6292i 0.884129 1.53136i 0.0374202 0.999300i \(-0.488086\pi\)
0.846709 0.532057i \(-0.178581\pi\)
\(740\) 8.04161 + 26.8316i 0.295615 + 0.986350i
\(741\) 0 0
\(742\) −7.39818 2.93783i −0.271596 0.107851i
\(743\) −32.1593 26.9848i −1.17981 0.989977i −0.999980 0.00627899i \(-0.998001\pi\)
−0.179828 0.983698i \(-0.557554\pi\)
\(744\) 0 0
\(745\) −21.5043 7.82693i −0.787857 0.286756i
\(746\) −3.12763 + 15.1586i −0.114511 + 0.554995i
\(747\) 0 0
\(748\) −11.8154 5.09246i −0.432013 0.186199i
\(749\) 0.763565 + 4.33039i 0.0279000 + 0.158229i
\(750\) 0 0
\(751\) −13.3606 36.7079i −0.487534 1.33949i −0.902906 0.429838i \(-0.858571\pi\)
0.415371 0.909652i \(-0.363652\pi\)
\(752\) −45.6581 22.8962i −1.66498 0.834937i
\(753\) 0 0
\(754\) 17.8643 28.9721i 0.650579 1.05510i
\(755\) 36.5436i 1.32996i
\(756\) 0 0
\(757\) 46.6422i 1.69524i 0.530604 + 0.847620i \(0.321965\pi\)
−0.530604 + 0.847620i \(0.678035\pi\)
\(758\) −11.3468 6.99649i −0.412136 0.254124i
\(759\) 0 0
\(760\) 16.0180 16.0324i 0.581034 0.581556i
\(761\) −7.07189 19.4299i −0.256356 0.704332i −0.999385 0.0350727i \(-0.988834\pi\)
0.743029 0.669259i \(-0.233388\pi\)
\(762\) 0 0
\(763\) −1.79987 10.2076i −0.0651598 0.369540i
\(764\) 14.4581 + 6.23148i 0.523075 + 0.225447i
\(765\) 0 0
\(766\) 18.6160 + 3.84099i 0.672623 + 0.138781i
\(767\) 39.7346 + 14.4622i 1.43473 + 0.522200i
\(768\) 0 0
\(769\) −31.2082 26.1868i −1.12540 0.944321i −0.126533 0.991962i \(-0.540385\pi\)
−0.998864 + 0.0476419i \(0.984829\pi\)
\(770\) 6.66341 16.7801i 0.240133 0.604713i
\(771\) 0 0
\(772\) −43.9655 + 13.1767i −1.58235 + 0.474241i
\(773\) −10.3871 + 17.9910i −0.373598 + 0.647090i −0.990116 0.140250i \(-0.955209\pi\)
0.616518 + 0.787341i \(0.288543\pi\)
\(774\) 0 0
\(775\) 23.3351 13.4725i 0.838221 0.483947i
\(776\) −21.5576 + 46.2846i −0.773873 + 1.66152i
\(777\) 0 0
\(778\) −7.34307 9.28397i −0.263262 0.332847i
\(779\) 27.3218 + 4.81757i 0.978905 + 0.172607i
\(780\) 0 0
\(781\) −11.7920 14.0531i −0.421950 0.502861i
\(782\) −18.8554 + 6.25113i −0.674268 + 0.223540i
\(783\) 0 0
\(784\) 5.90025 19.7512i 0.210723 0.705399i
\(785\) −14.6647 17.4767i −0.523405 0.623769i
\(786\) 0 0
\(787\) 5.43029 30.7967i 0.193569 1.09778i −0.720873 0.693067i \(-0.756259\pi\)
0.914442 0.404717i \(-0.132630\pi\)
\(788\) −20.1535 + 30.6618i −0.717938 + 1.09228i
\(789\) 0 0
\(790\) 18.1799 + 33.7046i 0.646810 + 1.19916i
\(791\) −5.28765 9.15848i −0.188007 0.325638i
\(792\) 0 0
\(793\) −17.9582 + 31.1045i −0.637715 + 1.10455i
\(794\) 30.3508 + 0.878576i 1.07711 + 0.0311795i
\(795\) 0 0
\(796\) 0.232433 4.01139i 0.00823838 0.142180i
\(797\) 34.7586 + 29.1659i 1.23121 + 1.03311i 0.998159 + 0.0606447i \(0.0193157\pi\)
0.233052 + 0.972464i \(0.425129\pi\)
\(798\) 0 0
\(799\) 9.78479 26.8835i 0.346161 0.951069i
\(800\) −15.2969 + 28.4207i −0.540826 + 1.00482i
\(801\) 0 0
\(802\) 30.7920 + 27.3943i 1.08730 + 0.967327i
\(803\) −16.2389 + 2.86335i −0.573057 + 0.101045i
\(804\) 0 0
\(805\) −9.53403 26.1945i −0.336030 0.923236i
\(806\) −24.3519 + 3.57075i −0.857760 + 0.125774i
\(807\) 0 0
\(808\) 49.6742 4.36838i 1.74753 0.153679i
\(809\) 4.07482i 0.143263i −0.997431 0.0716315i \(-0.977179\pi\)
0.997431 0.0716315i \(-0.0228206\pi\)
\(810\) 0 0
\(811\) −27.7403 −0.974095 −0.487047 0.873376i \(-0.661926\pi\)
−0.487047 + 0.873376i \(0.661926\pi\)
\(812\) −17.2724 4.08819i −0.606144 0.143467i
\(813\) 0 0
\(814\) 17.1977 2.52172i 0.602779 0.0883861i
\(815\) −8.49962 + 3.09361i −0.297729 + 0.108364i
\(816\) 0 0
\(817\) 1.46624 + 8.31544i 0.0512971 + 0.290921i
\(818\) 16.6813 18.7503i 0.583249 0.655589i
\(819\) 0 0
\(820\) −73.6315 + 8.62861i −2.57132 + 0.301324i
\(821\) −20.0519 7.29828i −0.699815 0.254712i −0.0324830 0.999472i \(-0.510341\pi\)
−0.667332 + 0.744761i \(0.732564\pi\)
\(822\) 0 0
\(823\) 8.84276 10.5384i 0.308239 0.367345i −0.589579 0.807710i \(-0.700707\pi\)
0.897819 + 0.440365i \(0.145151\pi\)
\(824\) 25.4606 6.83440i 0.886964 0.238088i
\(825\) 0 0
\(826\) 0.638042 22.0414i 0.0222003 0.766920i
\(827\) 39.9803 + 23.0826i 1.39025 + 0.802662i 0.993343 0.115196i \(-0.0367495\pi\)
0.396909 + 0.917858i \(0.370083\pi\)
\(828\) 0 0
\(829\) 48.1207 27.7825i 1.67130 0.964925i 0.704387 0.709816i \(-0.251222\pi\)
0.966912 0.255110i \(-0.0821116\pi\)
\(830\) 5.33198 + 9.88523i 0.185076 + 0.343121i
\(831\) 0 0
\(832\) 22.5672 18.9707i 0.782377 0.657689i
\(833\) 11.3704 + 2.00492i 0.393963 + 0.0694663i
\(834\) 0 0
\(835\) 37.5165 31.4801i 1.29831 1.08941i
\(836\) −8.40131 11.2779i −0.290565 0.390053i
\(837\) 0 0
\(838\) −49.5540 + 16.4286i −1.71182 + 0.567518i
\(839\) −35.4959 + 29.7846i −1.22546 + 1.02828i −0.226935 + 0.973910i \(0.572870\pi\)
−0.998521 + 0.0543696i \(0.982685\pi\)
\(840\) 0 0
\(841\) 2.37082 13.4456i 0.0817525 0.463641i
\(842\) 29.1094 23.0238i 1.00317 0.793452i
\(843\) 0 0
\(844\) 6.22896 + 5.87320i 0.214410 + 0.202164i
\(845\) −0.950013 1.64547i −0.0326814 0.0566059i
\(846\) 0 0
\(847\) 3.24265 + 1.87215i 0.111419 + 0.0643277i
\(848\) 9.88601 13.2958i 0.339487 0.456580i
\(849\) 0 0
\(850\) −16.8017 6.67197i −0.576293 0.228847i
\(851\) 17.2501 20.5578i 0.591325 0.704713i
\(852\) 0 0
\(853\) −7.11678 + 19.5532i −0.243674 + 0.669489i 0.756211 + 0.654328i \(0.227048\pi\)
−0.999885 + 0.0151612i \(0.995174\pi\)
\(854\) 18.3434 + 3.78474i 0.627698 + 0.129511i
\(855\) 0 0
\(856\) −9.11794 0.793595i −0.311645 0.0271245i
\(857\) 52.7015 9.29269i 1.80025 0.317432i 0.829676 0.558245i \(-0.188525\pi\)
0.970572 + 0.240813i \(0.0774139\pi\)
\(858\) 0 0
\(859\) −6.25960 + 2.27831i −0.213575 + 0.0777349i −0.446592 0.894738i \(-0.647362\pi\)
0.233017 + 0.972473i \(0.425140\pi\)
\(860\) −10.1324 20.1602i −0.345512 0.687458i
\(861\) 0 0
\(862\) 14.5815 + 8.99102i 0.496649 + 0.306235i
\(863\) −26.7202 −0.909566 −0.454783 0.890602i \(-0.650283\pi\)
−0.454783 + 0.890602i \(0.650283\pi\)
\(864\) 0 0
\(865\) 25.2963 0.860099
\(866\) 26.4117 + 16.2855i 0.897505 + 0.553404i
\(867\) 0 0
\(868\) 5.76371 + 11.4679i 0.195633 + 0.389247i
\(869\) 22.3302 8.12751i 0.757499 0.275707i
\(870\) 0 0
\(871\) 31.4900 5.55254i 1.06700 0.188141i
\(872\) 21.4928 + 1.87066i 0.727837 + 0.0633485i
\(873\) 0 0
\(874\) −21.2649 4.38754i −0.719297 0.148411i
\(875\) 1.07302 2.94811i 0.0362748 0.0996643i
\(876\) 0 0
\(877\) −19.4723 + 23.2062i −0.657534 + 0.783618i −0.987030 0.160539i \(-0.948677\pi\)
0.329496 + 0.944157i \(0.393121\pi\)
\(878\) 24.4572 + 9.71200i 0.825391 + 0.327764i
\(879\) 0 0
\(880\) 30.1568 + 22.4229i 1.01658 + 0.755875i
\(881\) 26.4220 + 15.2548i 0.890181 + 0.513946i 0.874002 0.485923i \(-0.161516\pi\)
0.0161793 + 0.999869i \(0.494850\pi\)
\(882\) 0 0
\(883\) −21.5979 37.4087i −0.726827 1.25890i −0.958218 0.286040i \(-0.907661\pi\)
0.231391 0.972861i \(-0.425672\pi\)
\(884\) 12.0144 + 11.3282i 0.404089 + 0.381010i
\(885\) 0 0
\(886\) −0.579759 + 0.458555i −0.0194774 + 0.0154055i
\(887\) −7.61863 + 43.2074i −0.255809 + 1.45076i 0.538180 + 0.842830i \(0.319112\pi\)
−0.793989 + 0.607933i \(0.791999\pi\)
\(888\) 0 0
\(889\) −11.0705 + 9.28928i −0.371294 + 0.311553i
\(890\) −5.38260 + 1.78449i −0.180425 + 0.0598164i
\(891\) 0 0
\(892\) 18.1491 + 24.3633i 0.607678 + 0.815744i
\(893\) 23.9547 20.1004i 0.801612 0.672633i
\(894\) 0 0
\(895\) 21.9736 + 3.87453i 0.734495 + 0.129511i
\(896\) −13.0936 8.05735i −0.437427 0.269177i
\(897\) 0 0
\(898\) −6.96166 12.9066i −0.232314 0.430698i
\(899\) −26.7105 + 15.4213i −0.890845 + 0.514329i
\(900\) 0 0
\(901\) 8.03679 + 4.64005i 0.267744 + 0.154582i
\(902\) −1.33112 + 45.9841i −0.0443214 + 1.53110i
\(903\) 0 0
\(904\) 21.2591 5.70657i 0.707066 0.189798i
\(905\) −13.6157 + 16.2266i −0.452603 + 0.539391i
\(906\) 0 0
\(907\) 35.4010 + 12.8849i 1.17547 + 0.427836i 0.854600 0.519287i \(-0.173802\pi\)
0.320870 + 0.947123i \(0.396025\pi\)
\(908\) 36.4722 4.27405i 1.21037 0.141839i
\(909\) 0 0
\(910\) −15.4022 + 17.3125i −0.510578 + 0.573904i
\(911\) −4.75504 26.9672i −0.157541 0.893462i −0.956425 0.291977i \(-0.905687\pi\)
0.798884 0.601485i \(-0.205424\pi\)
\(912\) 0 0
\(913\) 6.54922 2.38372i 0.216748 0.0788897i
\(914\) −10.7031 + 1.56940i −0.354026 + 0.0519112i
\(915\) 0 0
\(916\) 41.7428 + 9.88004i 1.37922 + 0.326446i
\(917\) −25.4223 −0.839518
\(918\) 0 0
\(919\) 40.1046i 1.32293i −0.749976 0.661465i \(-0.769935\pi\)
0.749976 0.661465i \(-0.230065\pi\)
\(920\) 57.7978 5.08278i 1.90554 0.167574i
\(921\) 0 0
\(922\) −7.27441 + 1.06666i −0.239570 + 0.0351284i
\(923\) 8.05281 + 22.1249i 0.265061 + 0.728250i
\(924\) 0 0
\(925\) 24.0516 4.24094i 0.790810 0.139441i
\(926\) −26.4546 23.5355i −0.869353 0.773425i
\(927\) 0 0
\(928\) 17.5096 32.5317i 0.574779 1.06791i
\(929\) −1.55733 + 4.27874i −0.0510945 + 0.140381i −0.962615 0.270874i \(-0.912687\pi\)
0.911520 + 0.411255i \(0.134909\pi\)
\(930\) 0 0
\(931\) 9.66755 + 8.11204i 0.316841 + 0.265861i
\(932\) 0.657256 11.3431i 0.0215291 0.371555i
\(933\) 0 0
\(934\) −9.00384 0.260638i −0.294615 0.00852832i
\(935\) −10.5243 + 18.2286i −0.344181 + 0.596138i
\(936\) 0 0
\(937\) −20.7897 36.0087i −0.679168 1.17635i −0.975232 0.221186i \(-0.929007\pi\)
0.296063 0.955168i \(-0.404326\pi\)
\(938\) −7.91606 14.6760i −0.258469 0.479188i
\(939\) 0 0
\(940\) −45.8967 + 69.8280i −1.49698 + 2.27754i
\(941\) 0.174402 0.989083i 0.00568534 0.0322432i −0.981833 0.189747i \(-0.939233\pi\)
0.987518 + 0.157503i \(0.0503445\pi\)
\(942\) 0 0
\(943\) 45.6553 + 54.4098i 1.48674 + 1.77183i
\(944\) 43.9764 + 13.1370i 1.43131 + 0.427574i
\(945\) 0 0
\(946\) −13.2899 + 4.40600i −0.432092 + 0.143251i
\(947\) −17.8652 21.2910i −0.580543 0.691864i 0.393216 0.919446i \(-0.371362\pi\)
−0.973759 + 0.227582i \(0.926918\pi\)
\(948\) 0 0
\(949\) 20.8417 + 3.67495i 0.676549 + 0.119294i
\(950\) −12.2581 15.4982i −0.397706 0.502827i
\(951\) 0 0
\(952\) 3.63573 7.80600i 0.117835 0.252994i
\(953\) −13.5698 + 7.83453i −0.439569 + 0.253785i −0.703415 0.710780i \(-0.748342\pi\)
0.263846 + 0.964565i \(0.415009\pi\)
\(954\) 0 0
\(955\) 12.8782 22.3057i 0.416729 0.721796i
\(956\) −20.2515 + 6.06951i −0.654981 + 0.196302i
\(957\) 0 0
\(958\) −11.9929 + 30.2012i −0.387475 + 0.975757i
\(959\) 7.28838 + 6.11568i 0.235354 + 0.197486i
\(960\) 0 0
\(961\) −8.17302 2.97474i −0.263646 0.0959592i
\(962\) −21.8481 4.50785i −0.704410 0.145339i
\(963\) 0 0
\(964\) 13.0097 + 5.60723i 0.419015 + 0.180597i
\(965\) 13.0388 + 73.9465i 0.419733 + 2.38042i
\(966\) 0 0
\(967\) 20.0933 + 55.2059i 0.646157 + 1.77530i 0.631457 + 0.775411i \(0.282457\pi\)
0.0147000 + 0.999892i \(0.495321\pi\)
\(968\) −5.50832 + 5.51327i −0.177044 + 0.177203i
\(969\) 0 0
\(970\) 71.1009 + 43.8410i 2.28291 + 1.40765i
\(971\) 3.85494i 0.123711i −0.998085 0.0618554i \(-0.980298\pi\)
0.998085 0.0618554i \(-0.0197018\pi\)
\(972\) 0 0
\(973\) 17.6945i 0.567261i
\(974\) −12.7525 + 20.6819i −0.408617 + 0.662690i
\(975\) 0 0
\(976\) −17.4754 + 34.8483i −0.559373 + 1.11547i
\(977\) −1.13249 3.11148i −0.0362314 0.0995450i 0.920258 0.391313i \(-0.127979\pi\)
−0.956489 + 0.291768i \(0.905757\pi\)
\(978\) 0 0
\(979\) 0.611042 + 3.46539i 0.0195290 + 0.110754i
\(980\) −30.9693 13.3479i −0.989278 0.426382i
\(981\) 0 0
\(982\) 3.61055 17.4991i 0.115217 0.558420i
\(983\) 52.1125 + 18.9674i 1.66213 + 0.604966i 0.990695 0.136097i \(-0.0434560\pi\)
0.671435 + 0.741063i \(0.265678\pi\)
\(984\) 0 0
\(985\) 45.9836 + 38.5848i 1.46516 + 1.22941i
\(986\) 19.2320 + 7.63707i 0.612473 + 0.243214i
\(987\) 0 0
\(988\) 5.18175 + 17.2894i 0.164853 + 0.550050i
\(989\) −10.8086 + 18.7211i −0.343694 + 0.595295i
\(990\) 0 0
\(991\) −52.1447 + 30.1057i −1.65643 + 0.956341i −0.682088 + 0.731270i \(0.738928\pi\)
−0.974343 + 0.225070i \(0.927739\pi\)
\(992\) −26.1588 + 5.42175i −0.830543 + 0.172141i
\(993\) 0 0
\(994\) 9.63007 7.61682i 0.305447 0.241591i
\(995\) −6.47366 1.14148i −0.205229 0.0361874i
\(996\) 0 0
\(997\) 20.0612 + 23.9080i 0.635343 + 0.757172i 0.983627 0.180217i \(-0.0576799\pi\)
−0.348284 + 0.937389i \(0.613235\pi\)
\(998\) 1.04939 + 3.16531i 0.0332180 + 0.100196i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.v.b.611.25 192
3.2 odd 2 216.2.v.b.59.8 yes 192
8.3 odd 2 inner 648.2.v.b.611.22 192
12.11 even 2 864.2.bh.b.815.7 192
24.5 odd 2 864.2.bh.b.815.8 192
24.11 even 2 216.2.v.b.59.11 yes 192
27.11 odd 18 inner 648.2.v.b.35.22 192
27.16 even 9 216.2.v.b.11.11 yes 192
108.43 odd 18 864.2.bh.b.335.8 192
216.11 even 18 inner 648.2.v.b.35.25 192
216.43 odd 18 216.2.v.b.11.8 192
216.205 even 18 864.2.bh.b.335.7 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
216.2.v.b.11.8 192 216.43 odd 18
216.2.v.b.11.11 yes 192 27.16 even 9
216.2.v.b.59.8 yes 192 3.2 odd 2
216.2.v.b.59.11 yes 192 24.11 even 2
648.2.v.b.35.22 192 27.11 odd 18 inner
648.2.v.b.35.25 192 216.11 even 18 inner
648.2.v.b.611.22 192 8.3 odd 2 inner
648.2.v.b.611.25 192 1.1 even 1 trivial
864.2.bh.b.335.7 192 216.205 even 18
864.2.bh.b.335.8 192 108.43 odd 18
864.2.bh.b.815.7 192 12.11 even 2
864.2.bh.b.815.8 192 24.5 odd 2