L(s) = 1 | + (1.86 − 1.86i)3-s + (1.17 + 1.90i)5-s + 3.61·7-s − 3.92i·9-s + (0.0947 − 0.0947i)11-s + (−2.59 + 2.59i)13-s + (5.72 + 1.36i)15-s − 1.89i·17-s + (2.16 + 2.16i)19-s + (6.72 − 6.72i)21-s − 5.08·23-s + (−2.25 + 4.46i)25-s + (−1.71 − 1.71i)27-s + (−1.25 − 1.25i)29-s − 1.27·31-s + ⋯ |
L(s) = 1 | + (1.07 − 1.07i)3-s + (0.524 + 0.851i)5-s + 1.36·7-s − 1.30i·9-s + (0.0285 − 0.0285i)11-s + (−0.719 + 0.719i)13-s + (1.47 + 0.351i)15-s − 0.460i·17-s + (0.496 + 0.496i)19-s + (1.46 − 1.46i)21-s − 1.05·23-s + (−0.450 + 0.892i)25-s + (−0.329 − 0.329i)27-s + (−0.233 − 0.233i)29-s − 0.228·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.887 + 0.460i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 640 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.887 + 0.460i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.43694 - 0.594623i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.43694 - 0.594623i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-1.17 - 1.90i)T \) |
good | 3 | \( 1 + (-1.86 + 1.86i)T - 3iT^{2} \) |
| 7 | \( 1 - 3.61T + 7T^{2} \) |
| 11 | \( 1 + (-0.0947 + 0.0947i)T - 11iT^{2} \) |
| 13 | \( 1 + (2.59 - 2.59i)T - 13iT^{2} \) |
| 17 | \( 1 + 1.89iT - 17T^{2} \) |
| 19 | \( 1 + (-2.16 - 2.16i)T + 19iT^{2} \) |
| 23 | \( 1 + 5.08T + 23T^{2} \) |
| 29 | \( 1 + (1.25 + 1.25i)T + 29iT^{2} \) |
| 31 | \( 1 + 1.27T + 31T^{2} \) |
| 37 | \( 1 + (2.25 + 2.25i)T + 37iT^{2} \) |
| 41 | \( 1 + 8.52iT - 41T^{2} \) |
| 43 | \( 1 + (1.61 + 1.61i)T + 43iT^{2} \) |
| 47 | \( 1 - 2.53iT - 47T^{2} \) |
| 53 | \( 1 + (5.67 + 5.67i)T + 53iT^{2} \) |
| 59 | \( 1 + (-7.81 + 7.81i)T - 59iT^{2} \) |
| 61 | \( 1 + (3.46 + 3.46i)T + 61iT^{2} \) |
| 67 | \( 1 + (6.29 - 6.29i)T - 67iT^{2} \) |
| 71 | \( 1 + 11.3iT - 71T^{2} \) |
| 73 | \( 1 + 16.1T + 73T^{2} \) |
| 79 | \( 1 - 1.13T + 79T^{2} \) |
| 83 | \( 1 + (-3.75 + 3.75i)T - 83iT^{2} \) |
| 89 | \( 1 - 3.98iT - 89T^{2} \) |
| 97 | \( 1 - 10.3iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.46526366336169279171515615655, −9.497376525496071674740355155476, −8.629989691269742627198314817903, −7.64138300270897214478899906552, −7.33111509042411242862220173631, −6.24306017004730467557825297956, −5.03434887745498572616798476126, −3.59468213976838148607819568263, −2.28493723243015529251579216581, −1.74792720180921090165275889869,
1.66868118391424064635558454000, 2.89636579361407735612328311049, 4.28286844856937013715119255785, 4.85328543745431527205100485220, 5.76217442934185280130716011960, 7.54602507750555239527152340293, 8.291783778098810681280434677400, 8.835470676216682742485984894420, 9.790693776764342657552409011308, 10.28178449637382431306244553712