Properties

Label 640.2.q.e.289.7
Level $640$
Weight $2$
Character 640.289
Analytic conductor $5.110$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [640,2,Mod(289,640)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(640, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("640.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 640 = 2^{7} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 640.q (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,8,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.11042572936\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: 16.0.534694406811304329216.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2x^{14} - 2x^{12} + 4x^{10} + 4x^{8} + 16x^{6} - 32x^{4} - 128x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 289.7
Root \(-1.40501 - 0.161069i\) of defining polynomial
Character \(\chi\) \(=\) 640.289
Dual form 640.2.q.e.609.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.86033 - 1.86033i) q^{3} +(1.17216 + 1.90421i) q^{5} +3.61392 q^{7} -3.92163i q^{9} +(0.0947876 - 0.0947876i) q^{11} +(-2.59462 + 2.59462i) q^{13} +(5.72307 + 1.36185i) q^{15} -1.89939i q^{17} +(2.16418 + 2.16418i) q^{19} +(6.72307 - 6.72307i) q^{21} -5.08251 q^{23} +(-2.25207 + 4.46410i) q^{25} +(-1.71452 - 1.71452i) q^{27} +(-1.25896 - 1.25896i) q^{29} -1.27453 q^{31} -0.352672i q^{33} +(4.23610 + 6.88168i) q^{35} +(-2.25207 - 2.25207i) q^{37} +9.65368i q^{39} -8.52451i q^{41} +(-1.61439 - 1.61439i) q^{43} +(7.46762 - 4.59679i) q^{45} +2.53884i q^{47} +6.06040 q^{49} +(-3.53349 - 3.53349i) q^{51} +(-5.67100 - 5.67100i) q^{53} +(0.291602 + 0.0693893i) q^{55} +8.05215 q^{57} +(7.81785 - 7.81785i) q^{59} +(-3.46410 - 3.46410i) q^{61} -14.1724i q^{63} +(-7.98203 - 1.89939i) q^{65} +(-6.29856 + 6.29856i) q^{67} +(-9.45512 + 9.45512i) q^{69} -11.3074i q^{71} -16.1786 q^{73} +(4.11511 + 12.4943i) q^{75} +(0.342555 - 0.342555i) q^{77} +1.13575 q^{79} +5.38573 q^{81} +(3.75489 - 3.75489i) q^{83} +(3.61685 - 2.22640i) q^{85} -4.68417 q^{87} +3.98203i q^{89} +(-9.37674 + 9.37674i) q^{91} +(-2.37103 + 2.37103i) q^{93} +(-1.58429 + 6.65783i) q^{95} +10.3042i q^{97} +(-0.371721 - 0.371721i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{5} - 8 q^{11} + 8 q^{19} + 16 q^{21} + 16 q^{29} + 16 q^{31} + 24 q^{35} - 8 q^{45} + 16 q^{49} + 16 q^{51} + 24 q^{59} - 32 q^{69} - 48 q^{75} + 16 q^{79} - 16 q^{81} + 16 q^{91} + 32 q^{95}+ \cdots - 88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/640\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.86033 1.86033i 1.07406 1.07406i 0.0770310 0.997029i \(-0.475456\pi\)
0.997029 0.0770310i \(-0.0245441\pi\)
\(4\) 0 0
\(5\) 1.17216 + 1.90421i 0.524207 + 0.851591i
\(6\) 0 0
\(7\) 3.61392 1.36593 0.682966 0.730450i \(-0.260690\pi\)
0.682966 + 0.730450i \(0.260690\pi\)
\(8\) 0 0
\(9\) 3.92163i 1.30721i
\(10\) 0 0
\(11\) 0.0947876 0.0947876i 0.0285795 0.0285795i −0.692673 0.721252i \(-0.743567\pi\)
0.721252 + 0.692673i \(0.243567\pi\)
\(12\) 0 0
\(13\) −2.59462 + 2.59462i −0.719618 + 0.719618i −0.968527 0.248909i \(-0.919928\pi\)
0.248909 + 0.968527i \(0.419928\pi\)
\(14\) 0 0
\(15\) 5.72307 + 1.36185i 1.47769 + 0.351629i
\(16\) 0 0
\(17\) 1.89939i 0.460671i −0.973111 0.230335i \(-0.926018\pi\)
0.973111 0.230335i \(-0.0739823\pi\)
\(18\) 0 0
\(19\) 2.16418 + 2.16418i 0.496496 + 0.496496i 0.910345 0.413849i \(-0.135816\pi\)
−0.413849 + 0.910345i \(0.635816\pi\)
\(20\) 0 0
\(21\) 6.72307 6.72307i 1.46709 1.46709i
\(22\) 0 0
\(23\) −5.08251 −1.05978 −0.529888 0.848068i \(-0.677766\pi\)
−0.529888 + 0.848068i \(0.677766\pi\)
\(24\) 0 0
\(25\) −2.25207 + 4.46410i −0.450413 + 0.892820i
\(26\) 0 0
\(27\) −1.71452 1.71452i −0.329960 0.329960i
\(28\) 0 0
\(29\) −1.25896 1.25896i −0.233784 0.233784i 0.580486 0.814270i \(-0.302863\pi\)
−0.814270 + 0.580486i \(0.802863\pi\)
\(30\) 0 0
\(31\) −1.27453 −0.228912 −0.114456 0.993428i \(-0.536512\pi\)
−0.114456 + 0.993428i \(0.536512\pi\)
\(32\) 0 0
\(33\) 0.352672i 0.0613923i
\(34\) 0 0
\(35\) 4.23610 + 6.88168i 0.716032 + 1.16322i
\(36\) 0 0
\(37\) −2.25207 2.25207i −0.370237 0.370237i 0.497326 0.867564i \(-0.334315\pi\)
−0.867564 + 0.497326i \(0.834315\pi\)
\(38\) 0 0
\(39\) 9.65368i 1.54583i
\(40\) 0 0
\(41\) 8.52451i 1.33130i −0.746262 0.665652i \(-0.768153\pi\)
0.746262 0.665652i \(-0.231847\pi\)
\(42\) 0 0
\(43\) −1.61439 1.61439i −0.246192 0.246192i 0.573214 0.819406i \(-0.305696\pi\)
−0.819406 + 0.573214i \(0.805696\pi\)
\(44\) 0 0
\(45\) 7.46762 4.59679i 1.11321 0.685249i
\(46\) 0 0
\(47\) 2.53884i 0.370328i 0.982708 + 0.185164i \(0.0592816\pi\)
−0.982708 + 0.185164i \(0.940718\pi\)
\(48\) 0 0
\(49\) 6.06040 0.865772
\(50\) 0 0
\(51\) −3.53349 3.53349i −0.494788 0.494788i
\(52\) 0 0
\(53\) −5.67100 5.67100i −0.778971 0.778971i 0.200684 0.979656i \(-0.435683\pi\)
−0.979656 + 0.200684i \(0.935683\pi\)
\(54\) 0 0
\(55\) 0.291602 + 0.0693893i 0.0393197 + 0.00935646i
\(56\) 0 0
\(57\) 8.05215 1.06653
\(58\) 0 0
\(59\) 7.81785 7.81785i 1.01780 1.01780i 0.0179591 0.999839i \(-0.494283\pi\)
0.999839 0.0179591i \(-0.00571688\pi\)
\(60\) 0 0
\(61\) −3.46410 3.46410i −0.443533 0.443533i 0.449665 0.893197i \(-0.351543\pi\)
−0.893197 + 0.449665i \(0.851543\pi\)
\(62\) 0 0
\(63\) 14.1724i 1.78556i
\(64\) 0 0
\(65\) −7.98203 1.89939i −0.990049 0.235591i
\(66\) 0 0
\(67\) −6.29856 + 6.29856i −0.769491 + 0.769491i −0.978017 0.208526i \(-0.933134\pi\)
0.208526 + 0.978017i \(0.433134\pi\)
\(68\) 0 0
\(69\) −9.45512 + 9.45512i −1.13826 + 1.13826i
\(70\) 0 0
\(71\) 11.3074i 1.34194i −0.741486 0.670968i \(-0.765879\pi\)
0.741486 0.670968i \(-0.234121\pi\)
\(72\) 0 0
\(73\) −16.1786 −1.89356 −0.946779 0.321885i \(-0.895684\pi\)
−0.946779 + 0.321885i \(0.895684\pi\)
\(74\) 0 0
\(75\) 4.11511 + 12.4943i 0.475172 + 1.44271i
\(76\) 0 0
\(77\) 0.342555 0.342555i 0.0390377 0.0390377i
\(78\) 0 0
\(79\) 1.13575 0.127782 0.0638908 0.997957i \(-0.479649\pi\)
0.0638908 + 0.997957i \(0.479649\pi\)
\(80\) 0 0
\(81\) 5.38573 0.598414
\(82\) 0 0
\(83\) 3.75489 3.75489i 0.412153 0.412153i −0.470335 0.882488i \(-0.655867\pi\)
0.882488 + 0.470335i \(0.155867\pi\)
\(84\) 0 0
\(85\) 3.61685 2.22640i 0.392303 0.241487i
\(86\) 0 0
\(87\) −4.68417 −0.502196
\(88\) 0 0
\(89\) 3.98203i 0.422094i 0.977476 + 0.211047i \(0.0676874\pi\)
−0.977476 + 0.211047i \(0.932313\pi\)
\(90\) 0 0
\(91\) −9.37674 + 9.37674i −0.982950 + 0.982950i
\(92\) 0 0
\(93\) −2.37103 + 2.37103i −0.245865 + 0.245865i
\(94\) 0 0
\(95\) −1.58429 + 6.65783i −0.162544 + 0.683079i
\(96\) 0 0
\(97\) 10.3042i 1.04623i 0.852261 + 0.523117i \(0.175231\pi\)
−0.852261 + 0.523117i \(0.824769\pi\)
\(98\) 0 0
\(99\) −0.371721 0.371721i −0.0373594 0.0373594i
\(100\) 0 0
\(101\) −1.25896 + 1.25896i −0.125272 + 0.125272i −0.766963 0.641691i \(-0.778233\pi\)
0.641691 + 0.766963i \(0.278233\pi\)
\(102\) 0 0
\(103\) 10.8655 1.07061 0.535306 0.844658i \(-0.320196\pi\)
0.535306 + 0.844658i \(0.320196\pi\)
\(104\) 0 0
\(105\) 20.6827 + 4.92163i 2.01842 + 0.480302i
\(106\) 0 0
\(107\) 9.48167 + 9.48167i 0.916628 + 0.916628i 0.996782 0.0801549i \(-0.0255415\pi\)
−0.0801549 + 0.996782i \(0.525541\pi\)
\(108\) 0 0
\(109\) 8.57530 + 8.57530i 0.821365 + 0.821365i 0.986304 0.164939i \(-0.0527427\pi\)
−0.164939 + 0.986304i \(0.552743\pi\)
\(110\) 0 0
\(111\) −8.37915 −0.795314
\(112\) 0 0
\(113\) 12.5286i 1.17860i 0.807916 + 0.589298i \(0.200595\pi\)
−0.807916 + 0.589298i \(0.799405\pi\)
\(114\) 0 0
\(115\) −5.95753 9.67818i −0.555542 0.902495i
\(116\) 0 0
\(117\) 10.1751 + 10.1751i 0.940691 + 0.940691i
\(118\) 0 0
\(119\) 6.86425i 0.629245i
\(120\) 0 0
\(121\) 10.9820i 0.998366i
\(122\) 0 0
\(123\) −15.8584 15.8584i −1.42990 1.42990i
\(124\) 0 0
\(125\) −11.1404 + 0.944243i −0.996427 + 0.0844556i
\(126\) 0 0
\(127\) 2.94200i 0.261061i 0.991444 + 0.130530i \(0.0416680\pi\)
−0.991444 + 0.130530i \(0.958332\pi\)
\(128\) 0 0
\(129\) −6.00658 −0.528850
\(130\) 0 0
\(131\) −6.54333 6.54333i −0.571693 0.571693i 0.360908 0.932601i \(-0.382467\pi\)
−0.932601 + 0.360908i \(0.882467\pi\)
\(132\) 0 0
\(133\) 7.82116 + 7.82116i 0.678180 + 0.678180i
\(134\) 0 0
\(135\) 1.25512 5.27453i 0.108023 0.453959i
\(136\) 0 0
\(137\) −1.82513 −0.155931 −0.0779657 0.996956i \(-0.524842\pi\)
−0.0779657 + 0.996956i \(0.524842\pi\)
\(138\) 0 0
\(139\) 5.36931 5.36931i 0.455419 0.455419i −0.441729 0.897148i \(-0.645635\pi\)
0.897148 + 0.441729i \(0.145635\pi\)
\(140\) 0 0
\(141\) 4.72307 + 4.72307i 0.397754 + 0.397754i
\(142\) 0 0
\(143\) 0.491875i 0.0411327i
\(144\) 0 0
\(145\) 0.921626 3.87305i 0.0765369 0.321639i
\(146\) 0 0
\(147\) 11.2743 11.2743i 0.929891 0.929891i
\(148\) 0 0
\(149\) −4.37915 + 4.37915i −0.358754 + 0.358754i −0.863354 0.504600i \(-0.831640\pi\)
0.504600 + 0.863354i \(0.331640\pi\)
\(150\) 0 0
\(151\) 12.9610i 1.05475i 0.849631 + 0.527377i \(0.176824\pi\)
−0.849631 + 0.527377i \(0.823176\pi\)
\(152\) 0 0
\(153\) −7.44871 −0.602193
\(154\) 0 0
\(155\) −1.49395 2.42697i −0.119997 0.194939i
\(156\) 0 0
\(157\) 9.12723 9.12723i 0.728432 0.728432i −0.241875 0.970307i \(-0.577762\pi\)
0.970307 + 0.241875i \(0.0777624\pi\)
\(158\) 0 0
\(159\) −21.0998 −1.67332
\(160\) 0 0
\(161\) −18.3678 −1.44758
\(162\) 0 0
\(163\) −6.15099 + 6.15099i −0.481783 + 0.481783i −0.905701 0.423918i \(-0.860654\pi\)
0.423918 + 0.905701i \(0.360654\pi\)
\(164\) 0 0
\(165\) 0.671562 0.413389i 0.0522811 0.0321823i
\(166\) 0 0
\(167\) −0.710173 −0.0549548 −0.0274774 0.999622i \(-0.508747\pi\)
−0.0274774 + 0.999622i \(0.508747\pi\)
\(168\) 0 0
\(169\) 0.464102i 0.0357001i
\(170\) 0 0
\(171\) 8.48709 8.48709i 0.649024 0.649024i
\(172\) 0 0
\(173\) −14.1773 + 14.1773i −1.07788 + 1.07788i −0.0811779 + 0.996700i \(0.525868\pi\)
−0.996700 + 0.0811779i \(0.974132\pi\)
\(174\) 0 0
\(175\) −8.13878 + 16.1329i −0.615234 + 1.21953i
\(176\) 0 0
\(177\) 29.0875i 2.18635i
\(178\) 0 0
\(179\) −9.00502 9.00502i −0.673067 0.673067i 0.285355 0.958422i \(-0.407889\pi\)
−0.958422 + 0.285355i \(0.907889\pi\)
\(180\) 0 0
\(181\) −14.1872 + 14.1872i −1.05452 + 1.05452i −0.0560986 + 0.998425i \(0.517866\pi\)
−0.998425 + 0.0560986i \(0.982134\pi\)
\(182\) 0 0
\(183\) −12.8887 −0.952761
\(184\) 0 0
\(185\) 1.64863 6.92820i 0.121209 0.509372i
\(186\) 0 0
\(187\) −0.180039 0.180039i −0.0131657 0.0131657i
\(188\) 0 0
\(189\) −6.19615 6.19615i −0.450704 0.450704i
\(190\) 0 0
\(191\) 18.9282 1.36960 0.684798 0.728733i \(-0.259890\pi\)
0.684798 + 0.728733i \(0.259890\pi\)
\(192\) 0 0
\(193\) 21.3880i 1.53954i −0.638319 0.769772i \(-0.720370\pi\)
0.638319 0.769772i \(-0.279630\pi\)
\(194\) 0 0
\(195\) −18.3827 + 11.3157i −1.31641 + 0.810333i
\(196\) 0 0
\(197\) −6.39341 6.39341i −0.455511 0.455511i 0.441667 0.897179i \(-0.354387\pi\)
−0.897179 + 0.441667i \(0.854387\pi\)
\(198\) 0 0
\(199\) 5.85641i 0.415150i −0.978219 0.207575i \(-0.933443\pi\)
0.978219 0.207575i \(-0.0665570\pi\)
\(200\) 0 0
\(201\) 23.4347i 1.65296i
\(202\) 0 0
\(203\) −4.54979 4.54979i −0.319333 0.319333i
\(204\) 0 0
\(205\) 16.2325 9.99212i 1.13373 0.697880i
\(206\) 0 0
\(207\) 19.9317i 1.38535i
\(208\) 0 0
\(209\) 0.410274 0.0283793
\(210\) 0 0
\(211\) 19.2640 + 19.2640i 1.32619 + 1.32619i 0.908668 + 0.417520i \(0.137100\pi\)
0.417520 + 0.908668i \(0.362900\pi\)
\(212\) 0 0
\(213\) −21.0354 21.0354i −1.44132 1.44132i
\(214\) 0 0
\(215\) 1.18181 4.96647i 0.0805991 0.338710i
\(216\) 0 0
\(217\) −4.60603 −0.312678
\(218\) 0 0
\(219\) −30.0974 + 30.0974i −2.03379 + 2.03379i
\(220\) 0 0
\(221\) 4.92820 + 4.92820i 0.331507 + 0.331507i
\(222\) 0 0
\(223\) 20.1117i 1.34678i −0.739287 0.673390i \(-0.764837\pi\)
0.739287 0.673390i \(-0.235163\pi\)
\(224\) 0 0
\(225\) 17.5065 + 8.83176i 1.16710 + 0.588784i
\(226\) 0 0
\(227\) −4.21430 + 4.21430i −0.279713 + 0.279713i −0.832994 0.553282i \(-0.813375\pi\)
0.553282 + 0.832994i \(0.313375\pi\)
\(228\) 0 0
\(229\) 18.0304 18.0304i 1.19148 1.19148i 0.214833 0.976651i \(-0.431079\pi\)
0.976651 0.214833i \(-0.0689207\pi\)
\(230\) 0 0
\(231\) 1.27453i 0.0838577i
\(232\) 0 0
\(233\) −4.57839 −0.299941 −0.149970 0.988691i \(-0.547918\pi\)
−0.149970 + 0.988691i \(0.547918\pi\)
\(234\) 0 0
\(235\) −4.83449 + 2.97593i −0.315367 + 0.194128i
\(236\) 0 0
\(237\) 2.11286 2.11286i 0.137245 0.137245i
\(238\) 0 0
\(239\) 18.3104 1.18440 0.592200 0.805791i \(-0.298259\pi\)
0.592200 + 0.805791i \(0.298259\pi\)
\(240\) 0 0
\(241\) −9.31393 −0.599963 −0.299982 0.953945i \(-0.596981\pi\)
−0.299982 + 0.953945i \(0.596981\pi\)
\(242\) 0 0
\(243\) 15.1628 15.1628i 0.972693 0.972693i
\(244\) 0 0
\(245\) 7.10379 + 11.5403i 0.453844 + 0.737283i
\(246\) 0 0
\(247\) −11.2304 −0.714575
\(248\) 0 0
\(249\) 13.9706i 0.885353i
\(250\) 0 0
\(251\) 14.2156 14.2156i 0.897281 0.897281i −0.0979143 0.995195i \(-0.531217\pi\)
0.995195 + 0.0979143i \(0.0312171\pi\)
\(252\) 0 0
\(253\) −0.481758 + 0.481758i −0.0302879 + 0.0302879i
\(254\) 0 0
\(255\) 2.58669 10.8704i 0.161985 0.680728i
\(256\) 0 0
\(257\) 17.1347i 1.06883i 0.845222 + 0.534416i \(0.179468\pi\)
−0.845222 + 0.534416i \(0.820532\pi\)
\(258\) 0 0
\(259\) −8.13878 8.13878i −0.505719 0.505719i
\(260\) 0 0
\(261\) −4.93719 + 4.93719i −0.305604 + 0.305604i
\(262\) 0 0
\(263\) −5.11593 −0.315462 −0.157731 0.987482i \(-0.550418\pi\)
−0.157731 + 0.987482i \(0.550418\pi\)
\(264\) 0 0
\(265\) 4.15146 17.4461i 0.255022 1.07171i
\(266\) 0 0
\(267\) 7.40788 + 7.40788i 0.453355 + 0.453355i
\(268\) 0 0
\(269\) −19.1506 19.1506i −1.16763 1.16763i −0.982763 0.184870i \(-0.940814\pi\)
−0.184870 0.982763i \(-0.559186\pi\)
\(270\) 0 0
\(271\) 4.72066 0.286760 0.143380 0.989668i \(-0.454203\pi\)
0.143380 + 0.989668i \(0.454203\pi\)
\(272\) 0 0
\(273\) 34.8876i 2.11149i
\(274\) 0 0
\(275\) 0.209674 + 0.636609i 0.0126438 + 0.0383890i
\(276\) 0 0
\(277\) 12.8887 + 12.8887i 0.774408 + 0.774408i 0.978874 0.204466i \(-0.0655457\pi\)
−0.204466 + 0.978874i \(0.565546\pi\)
\(278\) 0 0
\(279\) 4.99822i 0.299235i
\(280\) 0 0
\(281\) 16.4934i 0.983913i −0.870620 0.491956i \(-0.836282\pi\)
0.870620 0.491956i \(-0.163718\pi\)
\(282\) 0 0
\(283\) 7.69771 + 7.69771i 0.457581 + 0.457581i 0.897861 0.440279i \(-0.145121\pi\)
−0.440279 + 0.897861i \(0.645121\pi\)
\(284\) 0 0
\(285\) 9.43844 + 15.3330i 0.559085 + 0.908250i
\(286\) 0 0
\(287\) 30.8069i 1.81847i
\(288\) 0 0
\(289\) 13.3923 0.787783
\(290\) 0 0
\(291\) 19.1692 + 19.1692i 1.12372 + 1.12372i
\(292\) 0 0
\(293\) 5.75538 + 5.75538i 0.336233 + 0.336233i 0.854947 0.518715i \(-0.173589\pi\)
−0.518715 + 0.854947i \(0.673589\pi\)
\(294\) 0 0
\(295\) 24.0507 + 5.72307i 1.40028 + 0.333210i
\(296\) 0 0
\(297\) −0.325031 −0.0188602
\(298\) 0 0
\(299\) 13.1872 13.1872i 0.762634 0.762634i
\(300\) 0 0
\(301\) −5.83427 5.83427i −0.336282 0.336282i
\(302\) 0 0
\(303\) 4.68417i 0.269098i
\(304\) 0 0
\(305\) 2.53590 10.6569i 0.145205 0.610212i
\(306\) 0 0
\(307\) −9.60547 + 9.60547i −0.548213 + 0.548213i −0.925924 0.377711i \(-0.876711\pi\)
0.377711 + 0.925924i \(0.376711\pi\)
\(308\) 0 0
\(309\) 20.2134 20.2134i 1.14990 1.14990i
\(310\) 0 0
\(311\) 20.3415i 1.15346i 0.816934 + 0.576731i \(0.195672\pi\)
−0.816934 + 0.576731i \(0.804328\pi\)
\(312\) 0 0
\(313\) 25.6414 1.44934 0.724669 0.689097i \(-0.241993\pi\)
0.724669 + 0.689097i \(0.241993\pi\)
\(314\) 0 0
\(315\) 26.9874 16.6124i 1.52057 0.936003i
\(316\) 0 0
\(317\) −0.945994 + 0.945994i −0.0531323 + 0.0531323i −0.733174 0.680041i \(-0.761962\pi\)
0.680041 + 0.733174i \(0.261962\pi\)
\(318\) 0 0
\(319\) −0.238668 −0.0133629
\(320\) 0 0
\(321\) 35.2780 1.96903
\(322\) 0 0
\(323\) 4.11062 4.11062i 0.228721 0.228721i
\(324\) 0 0
\(325\) −5.73939 17.4259i −0.318364 0.966615i
\(326\) 0 0
\(327\) 31.9057 1.76439
\(328\) 0 0
\(329\) 9.17515i 0.505843i
\(330\) 0 0
\(331\) −6.16418 + 6.16418i −0.338814 + 0.338814i −0.855921 0.517107i \(-0.827009\pi\)
0.517107 + 0.855921i \(0.327009\pi\)
\(332\) 0 0
\(333\) −8.83176 + 8.83176i −0.483977 + 0.483977i
\(334\) 0 0
\(335\) −19.3767 4.61086i −1.05866 0.251918i
\(336\) 0 0
\(337\) 28.2333i 1.53797i 0.639269 + 0.768983i \(0.279237\pi\)
−0.639269 + 0.768983i \(0.720763\pi\)
\(338\) 0 0
\(339\) 23.3074 + 23.3074i 1.26588 + 1.26588i
\(340\) 0 0
\(341\) −0.120809 + 0.120809i −0.00654219 + 0.00654219i
\(342\) 0 0
\(343\) −3.39562 −0.183346
\(344\) 0 0
\(345\) −29.0875 6.92163i −1.56602 0.372648i
\(346\) 0 0
\(347\) −13.0548 13.0548i −0.700816 0.700816i 0.263770 0.964586i \(-0.415034\pi\)
−0.964586 + 0.263770i \(0.915034\pi\)
\(348\) 0 0
\(349\) 20.3080 + 20.3080i 1.08706 + 1.08706i 0.995830 + 0.0912314i \(0.0290803\pi\)
0.0912314 + 0.995830i \(0.470920\pi\)
\(350\) 0 0
\(351\) 8.89708 0.474891
\(352\) 0 0
\(353\) 18.6814i 0.994310i −0.867662 0.497155i \(-0.834378\pi\)
0.867662 0.497155i \(-0.165622\pi\)
\(354\) 0 0
\(355\) 21.5316 13.2541i 1.14278 0.703453i
\(356\) 0 0
\(357\) −12.7697 12.7697i −0.675847 0.675847i
\(358\) 0 0
\(359\) 16.4072i 0.865937i −0.901409 0.432968i \(-0.857466\pi\)
0.901409 0.432968i \(-0.142534\pi\)
\(360\) 0 0
\(361\) 9.63268i 0.506983i
\(362\) 0 0
\(363\) 20.4302 + 20.4302i 1.07231 + 1.07231i
\(364\) 0 0
\(365\) −18.9639 30.8075i −0.992617 1.61254i
\(366\) 0 0
\(367\) 3.58049i 0.186900i 0.995624 + 0.0934500i \(0.0297895\pi\)
−0.995624 + 0.0934500i \(0.970210\pi\)
\(368\) 0 0
\(369\) −33.4299 −1.74029
\(370\) 0 0
\(371\) −20.4945 20.4945i −1.06402 1.06402i
\(372\) 0 0
\(373\) −8.72985 8.72985i −0.452015 0.452015i 0.444008 0.896023i \(-0.353556\pi\)
−0.896023 + 0.444008i \(0.853556\pi\)
\(374\) 0 0
\(375\) −18.9682 + 22.4814i −0.979512 + 1.16093i
\(376\) 0 0
\(377\) 6.53307 0.336470
\(378\) 0 0
\(379\) −6.11276 + 6.11276i −0.313991 + 0.313991i −0.846454 0.532462i \(-0.821267\pi\)
0.532462 + 0.846454i \(0.321267\pi\)
\(380\) 0 0
\(381\) 5.47309 + 5.47309i 0.280395 + 0.280395i
\(382\) 0 0
\(383\) 7.31434i 0.373745i 0.982384 + 0.186873i \(0.0598351\pi\)
−0.982384 + 0.186873i \(0.940165\pi\)
\(384\) 0 0
\(385\) 1.05383 + 0.250767i 0.0537080 + 0.0127803i
\(386\) 0 0
\(387\) −6.33103 + 6.33103i −0.321824 + 0.321824i
\(388\) 0 0
\(389\) 9.74166 9.74166i 0.493922 0.493922i −0.415618 0.909539i \(-0.636435\pi\)
0.909539 + 0.415618i \(0.136435\pi\)
\(390\) 0 0
\(391\) 9.65368i 0.488207i
\(392\) 0 0
\(393\) −24.3454 −1.22807
\(394\) 0 0
\(395\) 1.33128 + 2.16271i 0.0669841 + 0.108818i
\(396\) 0 0
\(397\) −8.04203 + 8.04203i −0.403618 + 0.403618i −0.879506 0.475888i \(-0.842127\pi\)
0.475888 + 0.879506i \(0.342127\pi\)
\(398\) 0 0
\(399\) 29.0998 1.45681
\(400\) 0 0
\(401\) −6.77627 −0.338391 −0.169195 0.985583i \(-0.554117\pi\)
−0.169195 + 0.985583i \(0.554117\pi\)
\(402\) 0 0
\(403\) 3.30691 3.30691i 0.164729 0.164729i
\(404\) 0 0
\(405\) 6.31295 + 10.2556i 0.313693 + 0.509604i
\(406\) 0 0
\(407\) −0.426936 −0.0211624
\(408\) 0 0
\(409\) 16.2601i 0.804010i 0.915637 + 0.402005i \(0.131687\pi\)
−0.915637 + 0.402005i \(0.868313\pi\)
\(410\) 0 0
\(411\) −3.39534 + 3.39534i −0.167480 + 0.167480i
\(412\) 0 0
\(413\) 28.2531 28.2531i 1.39024 1.39024i
\(414\) 0 0
\(415\) 11.5515 + 2.74877i 0.567039 + 0.134932i
\(416\) 0 0
\(417\) 19.9773i 0.978295i
\(418\) 0 0
\(419\) 10.1408 + 10.1408i 0.495409 + 0.495409i 0.910005 0.414596i \(-0.136077\pi\)
−0.414596 + 0.910005i \(0.636077\pi\)
\(420\) 0 0
\(421\) 13.5849 13.5849i 0.662088 0.662088i −0.293784 0.955872i \(-0.594915\pi\)
0.955872 + 0.293784i \(0.0949146\pi\)
\(422\) 0 0
\(423\) 9.95637 0.484095
\(424\) 0 0
\(425\) 8.47908 + 4.27756i 0.411296 + 0.207492i
\(426\) 0 0
\(427\) −12.5190 12.5190i −0.605836 0.605836i
\(428\) 0 0
\(429\) 0.915049 + 0.915049i 0.0441790 + 0.0441790i
\(430\) 0 0
\(431\) 1.37612 0.0662853 0.0331427 0.999451i \(-0.489448\pi\)
0.0331427 + 0.999451i \(0.489448\pi\)
\(432\) 0 0
\(433\) 19.9307i 0.957810i −0.877867 0.478905i \(-0.841034\pi\)
0.877867 0.478905i \(-0.158966\pi\)
\(434\) 0 0
\(435\) −5.49061 8.91966i −0.263255 0.427665i
\(436\) 0 0
\(437\) −10.9994 10.9994i −0.526175 0.526175i
\(438\) 0 0
\(439\) 25.4133i 1.21291i −0.795117 0.606455i \(-0.792591\pi\)
0.795117 0.606455i \(-0.207409\pi\)
\(440\) 0 0
\(441\) 23.7666i 1.13174i
\(442\) 0 0
\(443\) −24.7208 24.7208i −1.17452 1.17452i −0.981120 0.193402i \(-0.938048\pi\)
−0.193402 0.981120i \(-0.561952\pi\)
\(444\) 0 0
\(445\) −7.58264 + 4.66759i −0.359452 + 0.221265i
\(446\) 0 0
\(447\) 16.2933i 0.770646i
\(448\) 0 0
\(449\) 5.62743 0.265575 0.132787 0.991145i \(-0.457607\pi\)
0.132787 + 0.991145i \(0.457607\pi\)
\(450\) 0 0
\(451\) −0.808017 0.808017i −0.0380481 0.0380481i
\(452\) 0 0
\(453\) 24.1117 + 24.1117i 1.13287 + 1.13287i
\(454\) 0 0
\(455\) −28.8464 6.86425i −1.35234 0.321801i
\(456\) 0 0
\(457\) 26.6040 1.24448 0.622241 0.782825i \(-0.286222\pi\)
0.622241 + 0.782825i \(0.286222\pi\)
\(458\) 0 0
\(459\) −3.25656 + 3.25656i −0.152003 + 0.152003i
\(460\) 0 0
\(461\) −11.9468 11.9468i −0.556418 0.556418i 0.371868 0.928286i \(-0.378717\pi\)
−0.928286 + 0.371868i \(0.878717\pi\)
\(462\) 0 0
\(463\) 0.530134i 0.0246374i −0.999924 0.0123187i \(-0.996079\pi\)
0.999924 0.0123187i \(-0.00392127\pi\)
\(464\) 0 0
\(465\) −7.29420 1.73572i −0.338260 0.0804920i
\(466\) 0 0
\(467\) 11.4219 11.4219i 0.528542 0.528542i −0.391595 0.920138i \(-0.628077\pi\)
0.920138 + 0.391595i \(0.128077\pi\)
\(468\) 0 0
\(469\) −22.7625 + 22.7625i −1.05107 + 1.05107i
\(470\) 0 0
\(471\) 33.9592i 1.56476i
\(472\) 0 0
\(473\) −0.306048 −0.0140721
\(474\) 0 0
\(475\) −14.5350 + 4.78724i −0.666910 + 0.219654i
\(476\) 0 0
\(477\) −22.2395 + 22.2395i −1.01828 + 1.01828i
\(478\) 0 0
\(479\) 6.37434 0.291251 0.145625 0.989340i \(-0.453481\pi\)
0.145625 + 0.989340i \(0.453481\pi\)
\(480\) 0 0
\(481\) 11.6865 0.532859
\(482\) 0 0
\(483\) −34.1700 + 34.1700i −1.55479 + 1.55479i
\(484\) 0 0
\(485\) −19.6214 + 12.0782i −0.890963 + 0.548444i
\(486\) 0 0
\(487\) −31.3203 −1.41926 −0.709629 0.704575i \(-0.751138\pi\)
−0.709629 + 0.704575i \(0.751138\pi\)
\(488\) 0 0
\(489\) 22.8857i 1.03493i
\(490\) 0 0
\(491\) −14.0893 + 14.0893i −0.635843 + 0.635843i −0.949527 0.313684i \(-0.898437\pi\)
0.313684 + 0.949527i \(0.398437\pi\)
\(492\) 0 0
\(493\) −2.39127 + 2.39127i −0.107697 + 0.107697i
\(494\) 0 0
\(495\) 0.272119 1.14356i 0.0122308 0.0513990i
\(496\) 0 0
\(497\) 40.8639i 1.83299i
\(498\) 0 0
\(499\) 2.30233 + 2.30233i 0.103067 + 0.103067i 0.756760 0.653693i \(-0.226781\pi\)
−0.653693 + 0.756760i \(0.726781\pi\)
\(500\) 0 0
\(501\) −1.32115 + 1.32115i −0.0590248 + 0.0590248i
\(502\) 0 0
\(503\) 14.7556 0.657921 0.328961 0.944344i \(-0.393302\pi\)
0.328961 + 0.944344i \(0.393302\pi\)
\(504\) 0 0
\(505\) −3.87305 0.921626i −0.172348 0.0410118i
\(506\) 0 0
\(507\) −0.863380 0.863380i −0.0383441 0.0383441i
\(508\) 0 0
\(509\) 8.03042 + 8.03042i 0.355942 + 0.355942i 0.862315 0.506373i \(-0.169014\pi\)
−0.506373 + 0.862315i \(0.669014\pi\)
\(510\) 0 0
\(511\) −58.4680 −2.58647
\(512\) 0 0
\(513\) 7.42107i 0.327648i
\(514\) 0 0
\(515\) 12.7362 + 20.6903i 0.561223 + 0.911723i
\(516\) 0 0
\(517\) 0.240650 + 0.240650i 0.0105838 + 0.0105838i
\(518\) 0 0
\(519\) 52.7487i 2.31541i
\(520\) 0 0
\(521\) 13.7417i 0.602033i −0.953619 0.301017i \(-0.902674\pi\)
0.953619 0.301017i \(-0.0973259\pi\)
\(522\) 0 0
\(523\) 6.77116 + 6.77116i 0.296082 + 0.296082i 0.839477 0.543395i \(-0.182861\pi\)
−0.543395 + 0.839477i \(0.682861\pi\)
\(524\) 0 0
\(525\) 14.8717 + 45.1532i 0.649053 + 1.97065i
\(526\) 0 0
\(527\) 2.42083i 0.105453i
\(528\) 0 0
\(529\) 2.83186 0.123124
\(530\) 0 0
\(531\) −30.6587 30.6587i −1.33047 1.33047i
\(532\) 0 0
\(533\) 22.1179 + 22.1179i 0.958030 + 0.958030i
\(534\) 0 0
\(535\) −6.94106 + 29.1692i −0.300088 + 1.26109i
\(536\) 0 0
\(537\) −33.5046 −1.44583
\(538\) 0 0
\(539\) 0.574451 0.574451i 0.0247434 0.0247434i
\(540\) 0 0
\(541\) −7.82599 7.82599i −0.336465 0.336465i 0.518570 0.855035i \(-0.326465\pi\)
−0.855035 + 0.518570i \(0.826465\pi\)
\(542\) 0 0
\(543\) 52.7855i 2.26524i
\(544\) 0 0
\(545\) −6.27756 + 26.3809i −0.268901 + 1.13003i
\(546\) 0 0
\(547\) 16.1263 16.1263i 0.689511 0.689511i −0.272613 0.962124i \(-0.587888\pi\)
0.962124 + 0.272613i \(0.0878878\pi\)
\(548\) 0 0
\(549\) −13.5849 + 13.5849i −0.579790 + 0.579790i
\(550\) 0 0
\(551\) 5.44924i 0.232146i
\(552\) 0 0
\(553\) 4.10450 0.174541
\(554\) 0 0
\(555\) −9.82174 15.9557i −0.416909 0.677282i
\(556\) 0 0
\(557\) 13.7333 13.7333i 0.581897 0.581897i −0.353527 0.935424i \(-0.615018\pi\)
0.935424 + 0.353527i \(0.115018\pi\)
\(558\) 0 0
\(559\) 8.37745 0.354328
\(560\) 0 0
\(561\) −0.669862 −0.0282816
\(562\) 0 0
\(563\) −13.2023 + 13.2023i −0.556412 + 0.556412i −0.928284 0.371872i \(-0.878716\pi\)
0.371872 + 0.928284i \(0.378716\pi\)
\(564\) 0 0
\(565\) −23.8572 + 14.6856i −1.00368 + 0.617828i
\(566\) 0 0
\(567\) 19.4636 0.817393
\(568\) 0 0
\(569\) 7.32481i 0.307072i 0.988143 + 0.153536i \(0.0490661\pi\)
−0.988143 + 0.153536i \(0.950934\pi\)
\(570\) 0 0
\(571\) 22.1916 22.1916i 0.928688 0.928688i −0.0689332 0.997621i \(-0.521960\pi\)
0.997621 + 0.0689332i \(0.0219595\pi\)
\(572\) 0 0
\(573\) 35.2126 35.2126i 1.47103 1.47103i
\(574\) 0 0
\(575\) 11.4461 22.6888i 0.477337 0.946189i
\(576\) 0 0
\(577\) 9.39473i 0.391108i 0.980693 + 0.195554i \(0.0626504\pi\)
−0.980693 + 0.195554i \(0.937350\pi\)
\(578\) 0 0
\(579\) −39.7887 39.7887i −1.65356 1.65356i
\(580\) 0 0
\(581\) 13.5699 13.5699i 0.562973 0.562973i
\(582\) 0 0
\(583\) −1.07508 −0.0445253
\(584\) 0 0
\(585\) −7.44871 + 31.3025i −0.307966 + 1.29420i
\(586\) 0 0
\(587\) 10.7246 + 10.7246i 0.442650 + 0.442650i 0.892902 0.450252i \(-0.148666\pi\)
−0.450252 + 0.892902i \(0.648666\pi\)
\(588\) 0 0
\(589\) −2.75830 2.75830i −0.113654 0.113654i
\(590\) 0 0
\(591\) −23.7876 −0.978493
\(592\) 0 0
\(593\) 38.2253i 1.56973i 0.619670 + 0.784863i \(0.287267\pi\)
−0.619670 + 0.784863i \(0.712733\pi\)
\(594\) 0 0
\(595\) 13.0710 8.04603i 0.535859 0.329855i
\(596\) 0 0
\(597\) −10.8948 10.8948i −0.445896 0.445896i
\(598\) 0 0
\(599\) 41.5801i 1.69892i −0.527656 0.849458i \(-0.676929\pi\)
0.527656 0.849458i \(-0.323071\pi\)
\(600\) 0 0
\(601\) 23.1081i 0.942599i 0.881973 + 0.471299i \(0.156215\pi\)
−0.881973 + 0.471299i \(0.843785\pi\)
\(602\) 0 0
\(603\) 24.7006 + 24.7006i 1.00589 + 1.00589i
\(604\) 0 0
\(605\) −20.9121 + 12.8727i −0.850199 + 0.523351i
\(606\) 0 0
\(607\) 15.1150i 0.613500i −0.951790 0.306750i \(-0.900759\pi\)
0.951790 0.306750i \(-0.0992415\pi\)
\(608\) 0 0
\(609\) −16.9282 −0.685965
\(610\) 0 0
\(611\) −6.58732 6.58732i −0.266494 0.266494i
\(612\) 0 0
\(613\) 1.18710 + 1.18710i 0.0479466 + 0.0479466i 0.730674 0.682727i \(-0.239206\pi\)
−0.682727 + 0.730674i \(0.739206\pi\)
\(614\) 0 0
\(615\) 11.6091 48.7863i 0.468125 1.96725i
\(616\) 0 0
\(617\) 5.23711 0.210838 0.105419 0.994428i \(-0.466382\pi\)
0.105419 + 0.994428i \(0.466382\pi\)
\(618\) 0 0
\(619\) 6.52847 6.52847i 0.262401 0.262401i −0.563628 0.826029i \(-0.690595\pi\)
0.826029 + 0.563628i \(0.190595\pi\)
\(620\) 0 0
\(621\) 8.71408 + 8.71408i 0.349684 + 0.349684i
\(622\) 0 0
\(623\) 14.3907i 0.576553i
\(624\) 0 0
\(625\) −14.8564 20.1069i −0.594256 0.804276i
\(626\) 0 0
\(627\) 0.763244 0.763244i 0.0304810 0.0304810i
\(628\) 0 0
\(629\) −4.27756 + 4.27756i −0.170557 + 0.170557i
\(630\) 0 0
\(631\) 21.7193i 0.864633i −0.901722 0.432316i \(-0.857696\pi\)
0.901722 0.432316i \(-0.142304\pi\)
\(632\) 0 0
\(633\) 71.6746 2.84881
\(634\) 0 0
\(635\) −5.60221 + 3.44851i −0.222317 + 0.136850i
\(636\) 0 0
\(637\) −15.7244 + 15.7244i −0.623025 + 0.623025i
\(638\) 0 0
\(639\) −44.3432 −1.75419
\(640\) 0 0
\(641\) −45.3927 −1.79291 −0.896453 0.443139i \(-0.853865\pi\)
−0.896453 + 0.443139i \(0.853865\pi\)
\(642\) 0 0
\(643\) 20.5408 20.5408i 0.810049 0.810049i −0.174592 0.984641i \(-0.555861\pi\)
0.984641 + 0.174592i \(0.0558607\pi\)
\(644\) 0 0
\(645\) −7.04069 11.4378i −0.277227 0.450363i
\(646\) 0 0
\(647\) 31.7472 1.24811 0.624056 0.781379i \(-0.285484\pi\)
0.624056 + 0.781379i \(0.285484\pi\)
\(648\) 0 0
\(649\) 1.48207i 0.0581764i
\(650\) 0 0
\(651\) −8.56873 + 8.56873i −0.335835 + 0.335835i
\(652\) 0 0
\(653\) −4.30078 + 4.30078i −0.168302 + 0.168302i −0.786233 0.617930i \(-0.787971\pi\)
0.617930 + 0.786233i \(0.287971\pi\)
\(654\) 0 0
\(655\) 4.79005 20.1297i 0.187163 0.786534i
\(656\) 0 0
\(657\) 63.4463i 2.47527i
\(658\) 0 0
\(659\) 18.2156 + 18.2156i 0.709579 + 0.709579i 0.966447 0.256868i \(-0.0826905\pi\)
−0.256868 + 0.966447i \(0.582690\pi\)
\(660\) 0 0
\(661\) 19.7679 19.7679i 0.768883 0.768883i −0.209027 0.977910i \(-0.567030\pi\)
0.977910 + 0.209027i \(0.0670297\pi\)
\(662\) 0 0
\(663\) 18.3361 0.712116
\(664\) 0 0
\(665\) −5.72549 + 24.0608i −0.222025 + 0.933039i
\(666\) 0 0
\(667\) 6.39869 + 6.39869i 0.247758 + 0.247758i
\(668\) 0 0
\(669\) −37.4144 37.4144i −1.44652 1.44652i
\(670\) 0 0
\(671\) −0.656708 −0.0253519
\(672\) 0 0
\(673\) 8.43246i 0.325047i 0.986705 + 0.162524i \(0.0519634\pi\)
−0.986705 + 0.162524i \(0.948037\pi\)
\(674\) 0 0
\(675\) 11.5150 3.79259i 0.443214 0.145977i
\(676\) 0 0
\(677\) 20.8693 + 20.8693i 0.802073 + 0.802073i 0.983419 0.181346i \(-0.0580455\pi\)
−0.181346 + 0.983419i \(0.558046\pi\)
\(678\) 0 0
\(679\) 37.2386i 1.42909i
\(680\) 0 0
\(681\) 15.6799i 0.600856i
\(682\) 0 0
\(683\) 16.4398 + 16.4398i 0.629051 + 0.629051i 0.947829 0.318778i \(-0.103272\pi\)
−0.318778 + 0.947829i \(0.603272\pi\)
\(684\) 0 0
\(685\) −2.13935 3.47544i −0.0817404 0.132790i
\(686\) 0 0
\(687\) 67.0849i 2.55945i
\(688\) 0 0
\(689\) 29.4282 1.12112
\(690\) 0 0
\(691\) −17.4076 17.4076i −0.662216 0.662216i 0.293686 0.955902i \(-0.405118\pi\)
−0.955902 + 0.293686i \(0.905118\pi\)
\(692\) 0 0
\(693\) −1.34337 1.34337i −0.0510304 0.0510304i
\(694\) 0 0
\(695\) 16.5180 + 3.93061i 0.626565 + 0.149097i
\(696\) 0 0
\(697\) −16.1914 −0.613293
\(698\) 0 0
\(699\) −8.51731 + 8.51731i −0.322154 + 0.322154i
\(700\) 0 0
\(701\) 25.3888 + 25.3888i 0.958920 + 0.958920i 0.999189 0.0402687i \(-0.0128214\pi\)
−0.0402687 + 0.999189i \(0.512821\pi\)
\(702\) 0 0
\(703\) 9.74773i 0.367643i
\(704\) 0 0
\(705\) −3.45752 + 14.5299i −0.130218 + 0.547229i
\(706\) 0 0
\(707\) −4.54979 + 4.54979i −0.171113 + 0.171113i
\(708\) 0 0
\(709\) −17.6201 + 17.6201i −0.661738 + 0.661738i −0.955790 0.294051i \(-0.904996\pi\)
0.294051 + 0.955790i \(0.404996\pi\)
\(710\) 0 0
\(711\) 4.45398i 0.167037i
\(712\) 0 0
\(713\) 6.47779 0.242595
\(714\) 0 0
\(715\) −0.936636 + 0.576559i −0.0350282 + 0.0215621i
\(716\) 0 0
\(717\) 34.0633 34.0633i 1.27212 1.27212i
\(718\) 0 0
\(719\) −42.6068 −1.58896 −0.794482 0.607287i \(-0.792258\pi\)
−0.794482 + 0.607287i \(0.792258\pi\)
\(720\) 0 0
\(721\) 39.2671 1.46238
\(722\) 0 0
\(723\) −17.3269 + 17.3269i −0.644396 + 0.644396i
\(724\) 0 0
\(725\) 8.45542 2.78488i 0.314026 0.103428i
\(726\) 0 0
\(727\) −50.5830 −1.87602 −0.938010 0.346609i \(-0.887333\pi\)
−0.938010 + 0.346609i \(0.887333\pi\)
\(728\) 0 0
\(729\) 40.2583i 1.49105i
\(730\) 0 0
\(731\) −3.06636 + 3.06636i −0.113413 + 0.113413i
\(732\) 0 0
\(733\) −6.17299 + 6.17299i −0.228005 + 0.228005i −0.811859 0.583854i \(-0.801544\pi\)
0.583854 + 0.811859i \(0.301544\pi\)
\(734\) 0 0
\(735\) 34.6841 + 8.25338i 1.27934 + 0.304431i
\(736\) 0 0
\(737\) 1.19405i 0.0439834i
\(738\) 0 0
\(739\) −22.8974 22.8974i −0.842293 0.842293i 0.146864 0.989157i \(-0.453082\pi\)
−0.989157 + 0.146864i \(0.953082\pi\)
\(740\) 0 0
\(741\) −20.8923 + 20.8923i −0.767497 + 0.767497i
\(742\) 0 0
\(743\) −11.8975 −0.436478 −0.218239 0.975895i \(-0.570031\pi\)
−0.218239 + 0.975895i \(0.570031\pi\)
\(744\) 0 0
\(745\) −13.4719 3.20576i −0.493573 0.117450i
\(746\) 0 0
\(747\) −14.7253 14.7253i −0.538770 0.538770i
\(748\) 0 0
\(749\) 34.2660 + 34.2660i 1.25205 + 1.25205i
\(750\) 0 0
\(751\) 23.4102 0.854250 0.427125 0.904193i \(-0.359526\pi\)
0.427125 + 0.904193i \(0.359526\pi\)
\(752\) 0 0
\(753\) 52.8913i 1.92747i
\(754\) 0 0
\(755\) −24.6806 + 15.1924i −0.898218 + 0.552910i
\(756\) 0 0
\(757\) 11.3218 + 11.3218i 0.411496 + 0.411496i 0.882260 0.470763i \(-0.156021\pi\)
−0.470763 + 0.882260i \(0.656021\pi\)
\(758\) 0 0
\(759\) 1.79246i 0.0650620i
\(760\) 0 0
\(761\) 8.53590i 0.309426i 0.987959 + 0.154713i \(0.0494453\pi\)
−0.987959 + 0.154713i \(0.950555\pi\)
\(762\) 0 0
\(763\) 30.9904 + 30.9904i 1.12193 + 1.12193i
\(764\) 0 0
\(765\) −8.73111 14.1839i −0.315674 0.512821i
\(766\) 0 0
\(767\) 40.5687i 1.46485i
\(768\) 0 0
\(769\) −17.8384 −0.643270 −0.321635 0.946864i \(-0.604232\pi\)
−0.321635 + 0.946864i \(0.604232\pi\)
\(770\) 0 0
\(771\) 31.8761 + 31.8761i 1.14799 + 1.14799i
\(772\) 0 0
\(773\) −23.9457 23.9457i −0.861267 0.861267i 0.130219 0.991485i \(-0.458432\pi\)
−0.991485 + 0.130219i \(0.958432\pi\)
\(774\) 0 0
\(775\) 2.87032 5.68962i 0.103105 0.204377i
\(776\) 0 0
\(777\) −30.2816 −1.08635
\(778\) 0 0
\(779\) 18.4485 18.4485i 0.660988 0.660988i
\(780\) 0 0
\(781\) −1.07180 1.07180i −0.0383519 0.0383519i
\(782\) 0 0
\(783\) 4.31705i 0.154279i
\(784\) 0 0
\(785\) 28.0788 + 6.68160i 1.00218 + 0.238476i
\(786\) 0 0
\(787\) −32.3914 + 32.3914i −1.15463 + 1.15463i −0.169014 + 0.985614i \(0.554058\pi\)
−0.985614 + 0.169014i \(0.945942\pi\)
\(788\) 0 0
\(789\) −9.51731 + 9.51731i −0.338825 + 0.338825i
\(790\) 0 0
\(791\) 45.2775i 1.60988i
\(792\) 0 0
\(793\) 17.9761 0.638348
\(794\) 0 0
\(795\) −24.7324 40.1786i −0.877169 1.42499i
\(796\) 0 0
\(797\) −1.92658 + 1.92658i −0.0682428 + 0.0682428i −0.740404 0.672162i \(-0.765366\pi\)
0.672162 + 0.740404i \(0.265366\pi\)
\(798\) 0 0
\(799\) 4.82225 0.170599
\(800\) 0 0
\(801\) 15.6160 0.551765
\(802\) 0 0
\(803\) −1.53353 + 1.53353i −0.0541170 + 0.0541170i
\(804\) 0 0
\(805\) −21.5300 34.9761i −0.758833 1.23275i
\(806\) 0 0
\(807\) −71.2527 −2.50822
\(808\) 0 0
\(809\) 49.8993i 1.75437i −0.480157 0.877183i \(-0.659420\pi\)
0.480157 0.877183i \(-0.340580\pi\)
\(810\) 0 0
\(811\) −22.9363 + 22.9363i −0.805401 + 0.805401i −0.983934 0.178533i \(-0.942865\pi\)
0.178533 + 0.983934i \(0.442865\pi\)
\(812\) 0 0
\(813\) 8.78196 8.78196i 0.307997 0.307997i
\(814\) 0 0
\(815\) −18.9228 4.50284i −0.662836 0.157727i
\(816\) 0 0
\(817\) 6.98764i 0.244467i
\(818\) 0 0
\(819\) 36.7721 + 36.7721i 1.28492 + 1.28492i
\(820\) 0 0
\(821\) −10.7321 + 10.7321i −0.374551 + 0.374551i −0.869132 0.494581i \(-0.835322\pi\)
0.494581 + 0.869132i \(0.335322\pi\)
\(822\) 0 0
\(823\) −8.56875 −0.298688 −0.149344 0.988785i \(-0.547716\pi\)
−0.149344 + 0.988785i \(0.547716\pi\)
\(824\) 0 0
\(825\) 1.57436 + 0.794239i 0.0548123 + 0.0276519i
\(826\) 0 0
\(827\) 10.0841 + 10.0841i 0.350660 + 0.350660i 0.860355 0.509695i \(-0.170242\pi\)
−0.509695 + 0.860355i \(0.670242\pi\)
\(828\) 0 0
\(829\) −0.656708 0.656708i −0.0228084 0.0228084i 0.695611 0.718419i \(-0.255134\pi\)
−0.718419 + 0.695611i \(0.755134\pi\)
\(830\) 0 0
\(831\) 47.9544 1.66352
\(832\) 0 0
\(833\) 11.5111i 0.398836i
\(834\) 0 0
\(835\) −0.832439 1.35232i −0.0288077 0.0467990i
\(836\) 0 0
\(837\) 2.18521 + 2.18521i 0.0755318 + 0.0755318i
\(838\) 0 0
\(839\) 5.41206i 0.186845i 0.995627 + 0.0934225i \(0.0297807\pi\)
−0.995627 + 0.0934225i \(0.970219\pi\)
\(840\) 0 0
\(841\) 25.8300i 0.890690i
\(842\) 0 0
\(843\) −30.6831 30.6831i −1.05678 1.05678i
\(844\) 0 0
\(845\) 0.883749 0.544003i 0.0304019 0.0187143i
\(846\) 0 0
\(847\) 39.6882i 1.36370i
\(848\) 0 0
\(849\) 28.6405 0.982939
\(850\) 0 0
\(851\) 11.4461 + 11.4461i 0.392368 + 0.392368i
\(852\) 0 0
\(853\) −17.0301 17.0301i −0.583098 0.583098i 0.352655 0.935753i \(-0.385279\pi\)
−0.935753 + 0.352655i \(0.885279\pi\)
\(854\) 0 0
\(855\) 26.1095 + 6.21298i 0.892926 + 0.212480i
\(856\) 0 0
\(857\) −53.1079 −1.81413 −0.907066 0.420988i \(-0.861683\pi\)
−0.907066 + 0.420988i \(0.861683\pi\)
\(858\) 0 0
\(859\) 10.7609 10.7609i 0.367158 0.367158i −0.499282 0.866440i \(-0.666403\pi\)
0.866440 + 0.499282i \(0.166403\pi\)
\(860\) 0 0
\(861\) −57.3108 57.3108i −1.95315 1.95315i
\(862\) 0 0
\(863\) 21.2106i 0.722016i 0.932563 + 0.361008i \(0.117567\pi\)
−0.932563 + 0.361008i \(0.882433\pi\)
\(864\) 0 0
\(865\) −43.6146 10.3785i −1.48294 0.352879i
\(866\) 0 0
\(867\) 24.9141 24.9141i 0.846126 0.846126i
\(868\) 0 0
\(869\) 0.107655 0.107655i 0.00365194 0.00365194i
\(870\) 0 0
\(871\) 32.6847i 1.10748i
\(872\) 0 0
\(873\) 40.4093 1.36765
\(874\) 0 0
\(875\) −40.2605 + 3.41242i −1.36105 + 0.115361i
\(876\) 0 0
\(877\) −25.6041 + 25.6041i −0.864589 + 0.864589i −0.991867 0.127278i \(-0.959376\pi\)
0.127278 + 0.991867i \(0.459376\pi\)
\(878\) 0 0
\(879\) 21.4138 0.722268
\(880\) 0 0
\(881\) −13.0675 −0.440255 −0.220128 0.975471i \(-0.570647\pi\)
−0.220128 + 0.975471i \(0.570647\pi\)
\(882\) 0 0
\(883\) −12.1957 + 12.1957i −0.410419 + 0.410419i −0.881884 0.471466i \(-0.843725\pi\)
0.471466 + 0.881884i \(0.343725\pi\)
\(884\) 0 0
\(885\) 55.3889 34.0953i 1.86188 1.14610i
\(886\) 0 0
\(887\) 36.3716 1.22124 0.610619 0.791924i \(-0.290921\pi\)
0.610619 + 0.791924i \(0.290921\pi\)
\(888\) 0 0
\(889\) 10.6322i 0.356591i
\(890\) 0 0
\(891\) 0.510500 0.510500i 0.0171024 0.0171024i
\(892\) 0 0
\(893\) −5.49449 + 5.49449i −0.183866 + 0.183866i
\(894\) 0 0
\(895\) 6.59213 27.7028i 0.220351 0.926004i
\(896\) 0 0
\(897\) 49.0649i 1.63823i
\(898\) 0 0
\(899\) 1.60458 + 1.60458i 0.0535159 + 0.0535159i
\(900\) 0 0
\(901\) −10.7715 + 10.7715i −0.358849 + 0.358849i
\(902\) 0 0
\(903\) −21.7073 −0.722373
\(904\) 0 0
\(905\) −43.6451 10.3857i −1.45081 0.345233i
\(906\) 0 0
\(907\) −35.4831 35.4831i −1.17820 1.17820i −0.980203 0.197996i \(-0.936557\pi\)
−0.197996 0.980203i \(-0.563443\pi\)
\(908\) 0 0
\(909\) 4.93719 + 4.93719i 0.163756 + 0.163756i
\(910\) 0 0
\(911\) 22.6536 0.750547 0.375274 0.926914i \(-0.377549\pi\)
0.375274 + 0.926914i \(0.377549\pi\)
\(912\) 0 0
\(913\) 0.711834i 0.0235583i
\(914\) 0 0
\(915\) −15.1077 24.5429i −0.499445 0.811363i
\(916\) 0 0
\(917\) −23.6470 23.6470i −0.780894 0.780894i
\(918\) 0 0
\(919\) 19.9532i 0.658195i 0.944296 + 0.329097i \(0.106744\pi\)
−0.944296 + 0.329097i \(0.893256\pi\)
\(920\) 0 0
\(921\) 35.7386i 1.17763i
\(922\) 0 0
\(923\) 29.3383 + 29.3383i 0.965681 + 0.965681i
\(924\) 0 0
\(925\) 15.1252 4.98165i 0.497315 0.163796i
\(926\) 0 0
\(927\) 42.6105i 1.39951i
\(928\) 0 0
\(929\) 11.0293 0.361859 0.180929 0.983496i \(-0.442089\pi\)
0.180929 + 0.983496i \(0.442089\pi\)
\(930\) 0 0
\(931\) 13.1158 + 13.1158i 0.429853 + 0.429853i
\(932\) 0 0
\(933\) 37.8418 + 37.8418i 1.23889 + 1.23889i
\(934\) 0 0
\(935\) 0.131798 0.553868i 0.00431024 0.0181134i
\(936\) 0 0
\(937\) 36.6851 1.19845 0.599225 0.800581i \(-0.295476\pi\)
0.599225 + 0.800581i \(0.295476\pi\)
\(938\) 0 0
\(939\) 47.7014 47.7014i 1.55668 1.55668i
\(940\) 0 0
\(941\) 26.8618 + 26.8618i 0.875671 + 0.875671i 0.993083 0.117412i \(-0.0374599\pi\)
−0.117412 + 0.993083i \(0.537460\pi\)
\(942\) 0 0
\(943\) 43.3258i 1.41088i
\(944\) 0 0
\(945\) 4.53590 19.0617i 0.147553 0.620077i
\(946\) 0 0
\(947\) 42.0944 42.0944i 1.36788 1.36788i 0.504433 0.863451i \(-0.331701\pi\)
0.863451 0.504433i \(-0.168299\pi\)
\(948\) 0 0
\(949\) 41.9772 41.9772i 1.36264 1.36264i
\(950\) 0 0
\(951\) 3.51971i 0.114135i
\(952\) 0 0
\(953\) 5.32619 0.172532 0.0862661 0.996272i \(-0.472506\pi\)
0.0862661 + 0.996272i \(0.472506\pi\)
\(954\) 0 0
\(955\) 22.1870 + 36.0434i 0.717953 + 1.16634i
\(956\) 0 0
\(957\) −0.444001 + 0.444001i −0.0143525 + 0.0143525i
\(958\) 0 0
\(959\) −6.59587 −0.212992
\(960\) 0 0
\(961\) −29.3756 −0.947599
\(962\) 0 0
\(963\) 37.1836 37.1836i 1.19822 1.19822i
\(964\) 0 0
\(965\) 40.7274 25.0703i 1.31106 0.807041i
\(966\) 0 0
\(967\) 29.9668 0.963667 0.481833 0.876263i \(-0.339971\pi\)
0.481833 + 0.876263i \(0.339971\pi\)
\(968\) 0 0
\(969\) 15.2942i 0.491320i
\(970\) 0 0
\(971\) −0.750872 + 0.750872i −0.0240966 + 0.0240966i −0.719052 0.694956i \(-0.755424\pi\)
0.694956 + 0.719052i \(0.255424\pi\)
\(972\) 0 0
\(973\) 19.4043 19.4043i 0.622072 0.622072i
\(974\) 0 0
\(975\) −43.0950 21.7407i −1.38014 0.696260i
\(976\) 0 0
\(977\) 26.2513i 0.839854i −0.907558 0.419927i \(-0.862056\pi\)
0.907558 0.419927i \(-0.137944\pi\)
\(978\) 0 0
\(979\) 0.377447 + 0.377447i 0.0120633 + 0.0120633i
\(980\) 0 0
\(981\) 33.6291 33.6291i 1.07370 1.07370i
\(982\) 0 0
\(983\) 13.0227 0.415360 0.207680 0.978197i \(-0.433409\pi\)
0.207680 + 0.978197i \(0.433409\pi\)
\(984\) 0 0
\(985\) 4.68030 19.6685i 0.149127 0.626692i
\(986\) 0 0
\(987\) 17.0688 + 17.0688i 0.543305 + 0.543305i
\(988\) 0 0
\(989\) 8.20514 + 8.20514i 0.260908 + 0.260908i
\(990\) 0 0
\(991\) 44.7487 1.42149 0.710744 0.703451i \(-0.248358\pi\)
0.710744 + 0.703451i \(0.248358\pi\)
\(992\) 0 0
\(993\) 22.9348i 0.727813i
\(994\) 0 0
\(995\) 11.1519 6.86467i 0.353538 0.217625i
\(996\) 0 0
\(997\) 21.2387 + 21.2387i 0.672637 + 0.672637i 0.958323 0.285686i \(-0.0922215\pi\)
−0.285686 + 0.958323i \(0.592222\pi\)
\(998\) 0 0
\(999\) 7.72244i 0.244327i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 640.2.q.e.289.7 16
4.3 odd 2 640.2.q.f.289.2 16
5.4 even 2 inner 640.2.q.e.289.2 16
8.3 odd 2 320.2.q.c.209.7 16
8.5 even 2 80.2.q.c.29.7 yes 16
16.3 odd 4 320.2.q.c.49.2 16
16.5 even 4 inner 640.2.q.e.609.2 16
16.11 odd 4 640.2.q.f.609.7 16
16.13 even 4 80.2.q.c.69.2 yes 16
20.19 odd 2 640.2.q.f.289.7 16
24.5 odd 2 720.2.bm.f.109.2 16
40.3 even 4 1600.2.l.h.401.7 16
40.13 odd 4 400.2.l.i.301.6 16
40.19 odd 2 320.2.q.c.209.2 16
40.27 even 4 1600.2.l.h.401.2 16
40.29 even 2 80.2.q.c.29.2 16
40.37 odd 4 400.2.l.i.301.3 16
48.29 odd 4 720.2.bm.f.469.7 16
80.3 even 4 1600.2.l.h.1201.7 16
80.13 odd 4 400.2.l.i.101.6 16
80.19 odd 4 320.2.q.c.49.7 16
80.29 even 4 80.2.q.c.69.7 yes 16
80.59 odd 4 640.2.q.f.609.2 16
80.67 even 4 1600.2.l.h.1201.2 16
80.69 even 4 inner 640.2.q.e.609.7 16
80.77 odd 4 400.2.l.i.101.3 16
120.29 odd 2 720.2.bm.f.109.7 16
240.29 odd 4 720.2.bm.f.469.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.q.c.29.2 16 40.29 even 2
80.2.q.c.29.7 yes 16 8.5 even 2
80.2.q.c.69.2 yes 16 16.13 even 4
80.2.q.c.69.7 yes 16 80.29 even 4
320.2.q.c.49.2 16 16.3 odd 4
320.2.q.c.49.7 16 80.19 odd 4
320.2.q.c.209.2 16 40.19 odd 2
320.2.q.c.209.7 16 8.3 odd 2
400.2.l.i.101.3 16 80.77 odd 4
400.2.l.i.101.6 16 80.13 odd 4
400.2.l.i.301.3 16 40.37 odd 4
400.2.l.i.301.6 16 40.13 odd 4
640.2.q.e.289.2 16 5.4 even 2 inner
640.2.q.e.289.7 16 1.1 even 1 trivial
640.2.q.e.609.2 16 16.5 even 4 inner
640.2.q.e.609.7 16 80.69 even 4 inner
640.2.q.f.289.2 16 4.3 odd 2
640.2.q.f.289.7 16 20.19 odd 2
640.2.q.f.609.2 16 80.59 odd 4
640.2.q.f.609.7 16 16.11 odd 4
720.2.bm.f.109.2 16 24.5 odd 2
720.2.bm.f.109.7 16 120.29 odd 2
720.2.bm.f.469.2 16 240.29 odd 4
720.2.bm.f.469.7 16 48.29 odd 4
1600.2.l.h.401.2 16 40.27 even 4
1600.2.l.h.401.7 16 40.3 even 4
1600.2.l.h.1201.2 16 80.67 even 4
1600.2.l.h.1201.7 16 80.3 even 4