Properties

Label 2-6336-33.32-c1-0-69
Degree $2$
Conductor $6336$
Sign $0.265 + 0.964i$
Analytic cond. $50.5932$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.408i·5-s + 1.15i·7-s + (2.10 − 2.56i)11-s − 1.00i·13-s − 3.62·17-s − 2.97i·19-s + 4.12i·23-s + 4.83·25-s + 5.04·29-s − 1.42·31-s + 0.470·35-s − 2.57·37-s − 4.78·41-s − 8.63i·43-s + 4.65i·47-s + ⋯
L(s)  = 1  − 0.182i·5-s + 0.434i·7-s + (0.634 − 0.773i)11-s − 0.278i·13-s − 0.879·17-s − 0.682i·19-s + 0.859i·23-s + 0.966·25-s + 0.937·29-s − 0.255·31-s + 0.0795·35-s − 0.423·37-s − 0.747·41-s − 1.31i·43-s + 0.678i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.265 + 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.265 + 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6336\)    =    \(2^{6} \cdot 3^{2} \cdot 11\)
Sign: $0.265 + 0.964i$
Analytic conductor: \(50.5932\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{6336} (2177, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 6336,\ (\ :1/2),\ 0.265 + 0.964i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.684286372\)
\(L(\frac12)\) \(\approx\) \(1.684286372\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + (-2.10 + 2.56i)T \)
good5 \( 1 + 0.408iT - 5T^{2} \)
7 \( 1 - 1.15iT - 7T^{2} \)
13 \( 1 + 1.00iT - 13T^{2} \)
17 \( 1 + 3.62T + 17T^{2} \)
19 \( 1 + 2.97iT - 19T^{2} \)
23 \( 1 - 4.12iT - 23T^{2} \)
29 \( 1 - 5.04T + 29T^{2} \)
31 \( 1 + 1.42T + 31T^{2} \)
37 \( 1 + 2.57T + 37T^{2} \)
41 \( 1 + 4.78T + 41T^{2} \)
43 \( 1 + 8.63iT - 43T^{2} \)
47 \( 1 - 4.65iT - 47T^{2} \)
53 \( 1 + 3.23iT - 53T^{2} \)
59 \( 1 + 3.11iT - 59T^{2} \)
61 \( 1 + 0.478iT - 61T^{2} \)
67 \( 1 - 3.25T + 67T^{2} \)
71 \( 1 - 1.00iT - 71T^{2} \)
73 \( 1 + 12.4iT - 73T^{2} \)
79 \( 1 - 11.1iT - 79T^{2} \)
83 \( 1 + 1.83T + 83T^{2} \)
89 \( 1 + 4.24iT - 89T^{2} \)
97 \( 1 - 10.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.029029905074761866495554400362, −6.99162764542665613693571591287, −6.60468078322629364252468116574, −5.68569916083474689905379632135, −5.10719270112201524950100045965, −4.26388214273352947928101271632, −3.39454682609549472545293469346, −2.64521172861639067990889650945, −1.59302231456270160823573609804, −0.47585331347691975435344660789, 1.03176208697369874935708387503, 2.02232088393846415617252814350, 2.91397983294943252138661032946, 3.94509478692374355046502466371, 4.47163424618216872947335007214, 5.21025713398511547012301962174, 6.34806624867970048509972488220, 6.71396844688504107461429111439, 7.34257205093546885533354131167, 8.220573395704910190734283052788

Graph of the $Z$-function along the critical line