L(s) = 1 | − 0.408i·5-s + 1.15i·7-s + (2.10 − 2.56i)11-s − 1.00i·13-s − 3.62·17-s − 2.97i·19-s + 4.12i·23-s + 4.83·25-s + 5.04·29-s − 1.42·31-s + 0.470·35-s − 2.57·37-s − 4.78·41-s − 8.63i·43-s + 4.65i·47-s + ⋯ |
L(s) = 1 | − 0.182i·5-s + 0.434i·7-s + (0.634 − 0.773i)11-s − 0.278i·13-s − 0.879·17-s − 0.682i·19-s + 0.859i·23-s + 0.966·25-s + 0.937·29-s − 0.255·31-s + 0.0795·35-s − 0.423·37-s − 0.747·41-s − 1.31i·43-s + 0.678i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.265 + 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.265 + 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.684286372\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.684286372\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (-2.10 + 2.56i)T \) |
good | 5 | \( 1 + 0.408iT - 5T^{2} \) |
| 7 | \( 1 - 1.15iT - 7T^{2} \) |
| 13 | \( 1 + 1.00iT - 13T^{2} \) |
| 17 | \( 1 + 3.62T + 17T^{2} \) |
| 19 | \( 1 + 2.97iT - 19T^{2} \) |
| 23 | \( 1 - 4.12iT - 23T^{2} \) |
| 29 | \( 1 - 5.04T + 29T^{2} \) |
| 31 | \( 1 + 1.42T + 31T^{2} \) |
| 37 | \( 1 + 2.57T + 37T^{2} \) |
| 41 | \( 1 + 4.78T + 41T^{2} \) |
| 43 | \( 1 + 8.63iT - 43T^{2} \) |
| 47 | \( 1 - 4.65iT - 47T^{2} \) |
| 53 | \( 1 + 3.23iT - 53T^{2} \) |
| 59 | \( 1 + 3.11iT - 59T^{2} \) |
| 61 | \( 1 + 0.478iT - 61T^{2} \) |
| 67 | \( 1 - 3.25T + 67T^{2} \) |
| 71 | \( 1 - 1.00iT - 71T^{2} \) |
| 73 | \( 1 + 12.4iT - 73T^{2} \) |
| 79 | \( 1 - 11.1iT - 79T^{2} \) |
| 83 | \( 1 + 1.83T + 83T^{2} \) |
| 89 | \( 1 + 4.24iT - 89T^{2} \) |
| 97 | \( 1 - 10.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.029029905074761866495554400362, −6.99162764542665613693571591287, −6.60468078322629364252468116574, −5.68569916083474689905379632135, −5.10719270112201524950100045965, −4.26388214273352947928101271632, −3.39454682609549472545293469346, −2.64521172861639067990889650945, −1.59302231456270160823573609804, −0.47585331347691975435344660789,
1.03176208697369874935708387503, 2.02232088393846415617252814350, 2.91397983294943252138661032946, 3.94509478692374355046502466371, 4.47163424618216872947335007214, 5.21025713398511547012301962174, 6.34806624867970048509972488220, 6.71396844688504107461429111439, 7.34257205093546885533354131167, 8.220573395704910190734283052788