L(s) = 1 | + (−0.386 + 0.280i)2-s + (0.0998 + 0.307i)3-s + (−0.547 + 1.68i)4-s + (0.809 + 0.587i)5-s + (−0.124 − 0.0906i)6-s + (0.829 − 2.55i)7-s + (−0.556 − 1.71i)8-s + (2.34 − 1.70i)9-s − 0.477·10-s − 0.572·12-s + (3.77 − 2.74i)13-s + (0.396 + 1.21i)14-s + (−0.0998 + 0.307i)15-s + (−2.17 − 1.57i)16-s + (3.74 + 2.71i)17-s + (−0.427 + 1.31i)18-s + ⋯ |
L(s) = 1 | + (−0.273 + 0.198i)2-s + (0.0576 + 0.177i)3-s + (−0.273 + 0.842i)4-s + (0.361 + 0.262i)5-s + (−0.0509 − 0.0369i)6-s + (0.313 − 0.965i)7-s + (−0.196 − 0.605i)8-s + (0.780 − 0.567i)9-s − 0.150·10-s − 0.165·12-s + (1.04 − 0.760i)13-s + (0.105 + 0.325i)14-s + (−0.0257 + 0.0793i)15-s + (−0.543 − 0.394i)16-s + (0.907 + 0.659i)17-s + (−0.100 + 0.309i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.927 - 0.374i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 605 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.927 - 0.374i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.43918 + 0.279540i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.43918 + 0.279540i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-0.809 - 0.587i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.386 - 0.280i)T + (0.618 - 1.90i)T^{2} \) |
| 3 | \( 1 + (-0.0998 - 0.307i)T + (-2.42 + 1.76i)T^{2} \) |
| 7 | \( 1 + (-0.829 + 2.55i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-3.77 + 2.74i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-3.74 - 2.71i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.34 + 4.12i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 2.77T + 23T^{2} \) |
| 29 | \( 1 + (0.931 - 2.86i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (1.93 - 1.40i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (3.28 - 10.1i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (0.683 + 2.10i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 7.06T + 43T^{2} \) |
| 47 | \( 1 + (-1.34 - 4.14i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-5.12 + 3.72i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-3.63 + 11.1i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-3.22 - 2.34i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 7.31T + 67T^{2} \) |
| 71 | \( 1 + (0.967 + 0.702i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-0.315 + 0.971i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (2.83 - 2.05i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (8.99 + 6.53i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 2.76T + 89T^{2} \) |
| 97 | \( 1 + (14.9 - 10.8i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.51767156487161817240315933434, −9.896872302633829465125913482551, −8.846714573877724117037379324448, −8.115051340636519733775168558866, −7.14918961837480264728341293084, −6.52686793568965118731490825361, −5.05202565302290802771944312582, −3.88591782207162999420776325736, −3.23538216431884904637273217050, −1.14726560832438018287757879647,
1.36353183273267094896567968572, 2.23501505122316450095146585375, 4.08106476554861232942774219467, 5.29502888748963709042368709243, 5.80953002511657124400524855824, 6.99687072024679066846846758678, 8.246496482343653326099874774538, 8.936241718284262970541982795255, 9.716142906416616443531655152202, 10.47754661342816907030980772503