| L(s) = 1 | + 1.68·2-s + 3-s + 1.83·4-s − 1.91·5-s + 1.68·6-s − 0.284·7-s + 1.39·8-s + 9-s − 3.22·10-s − 1.30·11-s + 1.83·12-s − 0.478·14-s − 1.91·15-s + 0.521·16-s + 0.830·17-s + 1.68·18-s − 1.30·19-s − 3.51·20-s − 0.284·21-s − 2.20·22-s + 1.39·24-s + 2.68·25-s + 27-s − 0.521·28-s − 3.22·30-s − 0.521·32-s − 1.30·33-s + ⋯ |
| L(s) = 1 | + 1.68·2-s + 3-s + 1.83·4-s − 1.91·5-s + 1.68·6-s − 0.284·7-s + 1.39·8-s + 9-s − 3.22·10-s − 1.30·11-s + 1.83·12-s − 0.478·14-s − 1.91·15-s + 0.521·16-s + 0.830·17-s + 1.68·18-s − 1.30·19-s − 3.51·20-s − 0.284·21-s − 2.20·22-s + 1.39·24-s + 2.68·25-s + 27-s − 0.521·28-s − 3.22·30-s − 0.521·32-s − 1.30·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 591 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 591 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.120358964\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.120358964\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 - T \) |
| 197 | \( 1 - T \) |
| good | 2 | \( 1 - 1.68T + T^{2} \) |
| 5 | \( 1 + 1.91T + T^{2} \) |
| 7 | \( 1 + 0.284T + T^{2} \) |
| 11 | \( 1 + 1.30T + T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 - 0.830T + T^{2} \) |
| 19 | \( 1 + 1.30T + T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - 0.830T + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - 1.68T + T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + 1.91T + T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + 0.284T + T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - 1.68T + T^{2} \) |
| 97 | \( 1 - 0.830T + T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.11819327255249116523739518260, −10.42024625195331145823785549147, −8.886681966505130115516048030272, −7.82063880061890677769549391375, −7.50417240217804859185671175052, −6.31538538301541073400568703538, −4.88055421624727734066880052540, −4.18550701066793006011325118947, −3.37579794647086645013551405443, −2.61041148005977183526182438709,
2.61041148005977183526182438709, 3.37579794647086645013551405443, 4.18550701066793006011325118947, 4.88055421624727734066880052540, 6.31538538301541073400568703538, 7.50417240217804859185671175052, 7.82063880061890677769549391375, 8.886681966505130115516048030272, 10.42024625195331145823785549147, 11.11819327255249116523739518260