L(s) = 1 | + (1.98 − 0.245i)2-s − 1.73i·3-s + (3.87 − 0.973i)4-s − 0.424·5-s + (−0.424 − 3.43i)6-s + (7.46 − 2.88i)8-s − 2.99·9-s + (−0.842 + 0.104i)10-s − 6.71i·11-s + (−1.68 − 6.71i)12-s + 9.57·13-s + 0.735i·15-s + (14.1 − 7.55i)16-s + 15.4·17-s + (−5.95 + 0.735i)18-s − 2.85i·19-s + ⋯ |
L(s) = 1 | + (0.992 − 0.122i)2-s − 0.577i·3-s + (0.969 − 0.243i)4-s − 0.0848·5-s + (−0.0707 − 0.572i)6-s + (0.932 − 0.360i)8-s − 0.333·9-s + (−0.0842 + 0.0104i)10-s − 0.610i·11-s + (−0.140 − 0.559i)12-s + 0.736·13-s + 0.0490i·15-s + (0.881 − 0.472i)16-s + 0.909·17-s + (−0.330 + 0.0408i)18-s − 0.150i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.243 + 0.969i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.243 + 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(3.476548570\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.476548570\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.98 + 0.245i)T \) |
| 3 | \( 1 + 1.73iT \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 0.424T + 25T^{2} \) |
| 11 | \( 1 + 6.71iT - 121T^{2} \) |
| 13 | \( 1 - 9.57T + 169T^{2} \) |
| 17 | \( 1 - 15.4T + 289T^{2} \) |
| 19 | \( 1 + 2.85iT - 361T^{2} \) |
| 23 | \( 1 + 32.6iT - 529T^{2} \) |
| 29 | \( 1 - 2.05T + 841T^{2} \) |
| 31 | \( 1 + 48.0iT - 961T^{2} \) |
| 37 | \( 1 - 18.5T + 1.36e3T^{2} \) |
| 41 | \( 1 + 24.5T + 1.68e3T^{2} \) |
| 43 | \( 1 - 81.2iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 76.0iT - 2.20e3T^{2} \) |
| 53 | \( 1 - 64.9T + 2.80e3T^{2} \) |
| 59 | \( 1 + 46.0iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 98.9T + 3.72e3T^{2} \) |
| 67 | \( 1 + 45.8iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 114. iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 11.0T + 5.32e3T^{2} \) |
| 79 | \( 1 + 7.63iT - 6.24e3T^{2} \) |
| 83 | \( 1 - 4.16iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 159.T + 7.92e3T^{2} \) |
| 97 | \( 1 - 147.T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63734406122720702978468530137, −9.551287078751306824282895711633, −8.213111937171068697486971704299, −7.58724061316576002260918424409, −6.29487305787235009492330738311, −5.93868211410373378009281593088, −4.62517132826342780221277891470, −3.53668948476083123870580045205, −2.46305617674908703394283515618, −1.02444723841606256603694103881,
1.73196454908239068486825708421, 3.28663764313178965723679114123, 3.96620008883965879536023654125, 5.15596620726013577994198917667, 5.80839859913507326139764497918, 6.99160354023736451684459064989, 7.82517836467878720476629631780, 8.910080173272152350993531515444, 10.09186267022432619722130033495, 10.66120782051826721532258157611