Properties

Label 2-588-12.11-c1-0-71
Degree $2$
Conductor $588$
Sign $-0.0883 - 0.996i$
Analytic cond. $4.69520$
Root an. cond. $2.16684$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.225 − 1.39i)2-s + (−0.687 − 1.58i)3-s + (−1.89 − 0.629i)4-s − 2.07i·5-s + (−2.37 + 0.602i)6-s + (−1.30 + 2.50i)8-s + (−2.05 + 2.18i)9-s + (−2.89 − 0.467i)10-s − 3.98·11-s + (0.306 + 3.45i)12-s + 1.30·13-s + (−3.30 + 1.42i)15-s + (3.20 + 2.38i)16-s − 2.94i·17-s + (2.59 + 3.35i)18-s + 1.09i·19-s + ⋯
L(s)  = 1  + (0.159 − 0.987i)2-s + (−0.397 − 0.917i)3-s + (−0.949 − 0.314i)4-s − 0.928i·5-s + (−0.969 + 0.245i)6-s + (−0.461 + 0.887i)8-s + (−0.684 + 0.729i)9-s + (−0.916 − 0.147i)10-s − 1.20·11-s + (0.0883 + 0.996i)12-s + 0.363·13-s + (−0.852 + 0.368i)15-s + (0.802 + 0.597i)16-s − 0.713i·17-s + (0.610 + 0.791i)18-s + 0.251i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0883 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0883 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(588\)    =    \(2^{2} \cdot 3 \cdot 7^{2}\)
Sign: $-0.0883 - 0.996i$
Analytic conductor: \(4.69520\)
Root analytic conductor: \(2.16684\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{588} (491, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 588,\ (\ :1/2),\ -0.0883 - 0.996i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.361180 + 0.394632i\)
\(L(\frac12)\) \(\approx\) \(0.361180 + 0.394632i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.225 + 1.39i)T \)
3 \( 1 + (0.687 + 1.58i)T \)
7 \( 1 \)
good5 \( 1 + 2.07iT - 5T^{2} \)
11 \( 1 + 3.98T + 11T^{2} \)
13 \( 1 - 1.30T + 13T^{2} \)
17 \( 1 + 2.94iT - 17T^{2} \)
19 \( 1 - 1.09iT - 19T^{2} \)
23 \( 1 + 7.50T + 23T^{2} \)
29 \( 1 - 0.865iT - 29T^{2} \)
31 \( 1 + 3.68iT - 31T^{2} \)
37 \( 1 - 4.17T + 37T^{2} \)
41 \( 1 + 7.01iT - 41T^{2} \)
43 \( 1 - 4.27iT - 43T^{2} \)
47 \( 1 + 7.50T + 47T^{2} \)
53 \( 1 - 4.94iT - 53T^{2} \)
59 \( 1 + 4.88T + 59T^{2} \)
61 \( 1 + 4.10T + 61T^{2} \)
67 \( 1 + 2.42iT - 67T^{2} \)
71 \( 1 + 0.901T + 71T^{2} \)
73 \( 1 + 13.0T + 73T^{2} \)
79 \( 1 + 10.3iT - 79T^{2} \)
83 \( 1 - 12.4T + 83T^{2} \)
89 \( 1 + 8.52iT - 89T^{2} \)
97 \( 1 + 15.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.26124381416240844092273754188, −9.237793389114194692167620687133, −8.276756459488532909120626708730, −7.67120625544989471373176205721, −6.08264948556568728745255121778, −5.31983321822659039760327636765, −4.42564300771788739833594996489, −2.85043622773485852751029107298, −1.68718188379239668647319059128, −0.29628708589438167231760017345, 2.95174158830476769767275682298, 3.97045942668254741826415878586, 5.00904638551497570639964730607, 5.94773728786520676943990752031, 6.61627145190040389345526914837, 7.81529134331283449452544922048, 8.531491797744779837118110082372, 9.720233058227276867200871581572, 10.33562983169612905213837462567, 11.07600363641649492421476625167

Graph of the $Z$-function along the critical line