L(s) = 1 | + (0.225 − 1.39i)2-s + (−0.687 − 1.58i)3-s + (−1.89 − 0.629i)4-s − 2.07i·5-s + (−2.37 + 0.602i)6-s + (−1.30 + 2.50i)8-s + (−2.05 + 2.18i)9-s + (−2.89 − 0.467i)10-s − 3.98·11-s + (0.306 + 3.45i)12-s + 1.30·13-s + (−3.30 + 1.42i)15-s + (3.20 + 2.38i)16-s − 2.94i·17-s + (2.59 + 3.35i)18-s + 1.09i·19-s + ⋯ |
L(s) = 1 | + (0.159 − 0.987i)2-s + (−0.397 − 0.917i)3-s + (−0.949 − 0.314i)4-s − 0.928i·5-s + (−0.969 + 0.245i)6-s + (−0.461 + 0.887i)8-s + (−0.684 + 0.729i)9-s + (−0.916 − 0.147i)10-s − 1.20·11-s + (0.0883 + 0.996i)12-s + 0.363·13-s + (−0.852 + 0.368i)15-s + (0.802 + 0.597i)16-s − 0.713i·17-s + (0.610 + 0.791i)18-s + 0.251i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0883 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0883 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.361180 + 0.394632i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.361180 + 0.394632i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.225 + 1.39i)T \) |
| 3 | \( 1 + (0.687 + 1.58i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + 2.07iT - 5T^{2} \) |
| 11 | \( 1 + 3.98T + 11T^{2} \) |
| 13 | \( 1 - 1.30T + 13T^{2} \) |
| 17 | \( 1 + 2.94iT - 17T^{2} \) |
| 19 | \( 1 - 1.09iT - 19T^{2} \) |
| 23 | \( 1 + 7.50T + 23T^{2} \) |
| 29 | \( 1 - 0.865iT - 29T^{2} \) |
| 31 | \( 1 + 3.68iT - 31T^{2} \) |
| 37 | \( 1 - 4.17T + 37T^{2} \) |
| 41 | \( 1 + 7.01iT - 41T^{2} \) |
| 43 | \( 1 - 4.27iT - 43T^{2} \) |
| 47 | \( 1 + 7.50T + 47T^{2} \) |
| 53 | \( 1 - 4.94iT - 53T^{2} \) |
| 59 | \( 1 + 4.88T + 59T^{2} \) |
| 61 | \( 1 + 4.10T + 61T^{2} \) |
| 67 | \( 1 + 2.42iT - 67T^{2} \) |
| 71 | \( 1 + 0.901T + 71T^{2} \) |
| 73 | \( 1 + 13.0T + 73T^{2} \) |
| 79 | \( 1 + 10.3iT - 79T^{2} \) |
| 83 | \( 1 - 12.4T + 83T^{2} \) |
| 89 | \( 1 + 8.52iT - 89T^{2} \) |
| 97 | \( 1 + 15.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26124381416240844092273754188, −9.237793389114194692167620687133, −8.276756459488532909120626708730, −7.67120625544989471373176205721, −6.08264948556568728745255121778, −5.31983321822659039760327636765, −4.42564300771788739833594996489, −2.85043622773485852751029107298, −1.68718188379239668647319059128, −0.29628708589438167231760017345,
2.95174158830476769767275682298, 3.97045942668254741826415878586, 5.00904638551497570639964730607, 5.94773728786520676943990752031, 6.61627145190040389345526914837, 7.81529134331283449452544922048, 8.531491797744779837118110082372, 9.720233058227276867200871581572, 10.33562983169612905213837462567, 11.07600363641649492421476625167